Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neurooncol Adv ; 6(1): vdae014, 2024.
Article in English | MEDLINE | ID: mdl-38420615

ABSTRACT

Background: A significant unmet need exists for the treatment of glioblastoma, IDH-wildtype (GBM). Preclinical work shows that acetazolamide sensitizes GBM to temozolomide (TMZ) by overcoming TMZ resistance due to BCL-3-dependent upregulation of carbonic anhydrase. Acetazolamide is Food and Drug Administration-approved for the treatment of altitude sickness. Drug repurposing enables the application of drugs to diseases beyond initial indications. This multi-institutional, open-label, phase I trial examined a combination of acetazolamide and TMZ in patients with MGMT promoter-methylated high-grade glioma. Methods: A total of 24 patients (GBM, IDH-wildtype = 22; Grade 4 astrocytoma, IDH-mutant = 1; Grade 3 astrocytoma, IDH-mutant = 1) were accrued over 17 months. All patients received oral acetazolamide (250 mg BID for 7 days increased to 500 mg BID for Days 8-21 of each 28-day cycle) during the adjuvant phase of TMZ for up to 6 cycles. Results: No patient had a dose-limiting toxicity. Adverse events were consistent with known sequelae of acetazolamide and TMZ. In the 23 WHO Grade 4 patients, the median overall survival (OS) was 30.1 months and the median progression-free survival was 16.0 months. The 2-year OS was 60.9%. In total 37% of the study population had high BCL-3 staining and trended toward shorter OS (17.2 months vs N.R., P = .06). Conclusions: The addition of acetazolamide is safe and tolerable in GBM patients receiving standard TMZ. Survival results compare favorably to historical data from randomized trials in patients with MGMT promoter-methylated GBM and support examination of acetazolamide in a randomized trial. BCL-3 expression is a potential biomarker for prognosis in GBM or for patients more likely to benefit from TMZ.

2.
Cell Biosci ; 12(1): 43, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379326

ABSTRACT

BACKGROUND: Nuclear factor-κB is a multi-subunit transcription factor that plays a central role in cellular senescence. We previously reported that an increase in the p52 subunit is seen in senescent cells and aged tissue. In the current work, we examined the mechanism by which p52 is activated and whether the increase in p52 promotes senescence. RESULTS: Using both primary mouse embryonic fibroblasts (MEFs) and WI-38 human lung fibroblasts, we examined cells after serial passage and following prolonged culture. An increase in p52 was found in the nucleus relative to pre-senescent cells. The increase in p52 protein was not reflected by an increase in NFKB2 mRNA or by an increase in the abundance of upstream activating kinases, IKKα and NIK. To examine whether p52 promotes senescence, we over-expressed mature p52 in primary MEFs. Significantly more senescence was seen compared to control, a finding not seen with p52 mutated at critical DNA binding residues. In addition, blocking p52 nuclear translocation with the peptide inhibitor, SN52, decreased ß-galactosidase (ß-gal) formation. Subsequent filtration studies demonstrated that proteins in conditioned media (CM) were necessary for the increase in p52 and mass spectrometry identified S100A4 and cyclophilin A (CYPA) as potential factors in CM necessary for induction of p52. The requirement of these proteins in CM for induction of p52 was confirmed using depletion and supplementation studies. In addition, we found that activation of STAT3 signaling was required for the increase in p52. Finally, genome wide ChIP-sequencing analysis confirmed that there is an increase in p52 chromatin enrichment with senescence and identified several downstream factors whose expression is regulated by increased p52 binding. CONCLUSIONS: These results demonstrate that p52 nuclear translocation is increased in senescent cells by factors in conditioned media and that mature p52 induces cellular senescence. The data are consistent with the prior observation that p52 is elevated in aged tissue and support the hypothesis that p52 contributes to organismal aging.

3.
Sci Rep ; 11(1): 5665, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707466

ABSTRACT

The alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression. Analysis of this pathway demonstrates that CDK1 is regulated by NF-κB via a putative κB-site in its proximal promoter. CDK1 was induced in a manner dependent on mature p50 and the atypical inhibitor κB protein, BCL-3. Treatment with TMZ induced binding of NF-κB to the κB-site as assessed by gel shift analysis and chromatin immunoprecipitation. Examination of a CDK1 promoter-reporter demonstrated the functional relevance of the κB-site and underlined the requirement of p50 and BCL-3 for activation. Targeted knockdown of CDK1 or chemical inhibition with the selective CDK1 inhibitor, RO-3306, potentiated the cytotoxic effect of TMZ. These results identify CDK1 as an NF-κB target gene regulated by p50 and BCL-3 and suggest that targeting CDK1 may be a strategy to improve the efficacy of TMZ against GBM.


Subject(s)
Brain Neoplasms/metabolism , CDC2 Protein Kinase/metabolism , Glioblastoma/metabolism , NF-kappa B/metabolism , Temozolomide/pharmacology , B-Cell Lymphoma 3 Protein/metabolism , Base Sequence , Binding Sites , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CDC2 Protein Kinase/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Promoter Regions, Genetic/genetics
4.
BMC Biol ; 18(1): 32, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209106

ABSTRACT

BACKGROUND: Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy. RESULTS: Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes. Subsequently, using both RNA interference and CRISPR/Cas9 technology, we demonstrated that DDX39B inhibits NF-κB activity by a general mechanism involving inhibition of p65 phosphorylation. Mechanistically, DDX39B mediates this effect by interacting with the pattern recognition receptor (PRR), LGP2, a pathway that required the cellular response to cytoplasmic double-stranded RNA (dsRNA). From a functional standpoint, loss of DDX39B promoted resistance to alkylating chemotherapy in glioblastoma cells. Further examination of DDX39B demonstrated that its protein abundance was regulated by site-specific sumoylation that promoted its poly-ubiquitination and degradation. These post-translational modifications required the presence of the SUMO E3 ligase, PIASx-ß. Finally, genome-wide analysis demonstrated that despite the link to the PRR system, DDX39B did not generally inhibit interferon-stimulated gene expression, but rather acted to attenuate expression of factors associated with the extracellular matrix, cellular migration, and angiogenesis. CONCLUSIONS: These results identify DDX39B, a factor with known functions in mRNA splicing and nuclear export, as an RNA-binding protein that blocks a subset of the inflammatory response. While these findings identify a pathway by which DDX39B promotes sensitization to DNA damaging therapy, the data also reveal a mechanism by which this helicase may act to mitigate autoimmune disease.


Subject(s)
DEAD-box RNA Helicases/genetics , NF-kappa B/metabolism , Receptors, Pattern Recognition/genetics , Signal Transduction , Alkylation , Animals , DEAD-box RNA Helicases/metabolism , DNA Probes , Drug Therapy , Humans , Mice , Receptors, Pattern Recognition/metabolism
5.
Cancer Res ; 79(10): 2536-2548, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30940658

ABSTRACT

Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , NF-kappa B/metabolism , RNA, Long Noncoding/biosynthesis , Temozolomide/therapeutic use , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , DNA Damage/genetics , Gene Knockdown Techniques , Glioblastoma/metabolism , Humans , Male , Mice , Mice, Nude , Prognosis , RNA, Long Noncoding/genetics , Xenograft Model Antitumor Assays
6.
Neurosurg Focus ; 45(5): E2, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30453455

ABSTRACT

OBJECTIVEModern surgical planning and prognostication requires the most accurate outcomes data to practice evidence-based medicine. For clinicians treating children following traumatic brain injury (TBI) these data are severely lacking. The first aim of this study was to assess published CT classification systems in the authors' pediatric cohort. A pediatric-specific machine-learning algorithm called an artificial neural network (ANN) was then created that robustly outperformed traditional CT classification systems in predicting TBI outcomes in children.METHODSThe clinical records of children under the age of 18 who suffered a TBI and underwent head CT within 24 hours after TBI (n = 565) were retrospectively reviewed.RESULTS"Favorable" outcome (alive with Glasgow Outcome Scale [GOS] score ≥ 4 at 6 months postinjury, n = 533) and "unfavorable" outcome (death at 6 months or GOS score ≤ 3 at 6 months postinjury, n = 32) were used as the primary outcomes. The area under the receiver operating characteristic (ROC) curve (AUC) was used to delineate the strength of each CT grading system in predicting survival (Helsinki, 0.814; Rotterdam, 0.838; and Marshall, 0.781). The AUC for CT score in predicting GOS score ≤ 3, a measure of overall functionality, was similarly predictive (Helsinki, 0.717; Rotterdam, 0.748; and Marshall, 0.663). An ANN was then constructed that was able to predict 6-month outcomes with profound accuracy (AUC = 0.9462 ± 0.0422).CONCLUSIONSThis study showed that machine-learning can be leveraged to more accurately predict TBI outcomes in children.


Subject(s)
Brain Injuries, Traumatic/classification , Brain Injuries, Traumatic/diagnosis , Electronic Health Records/classification , International Classification of Diseases , Machine Learning/classification , Models, Statistical , Adolescent , Child , Child, Preschool , Electronic Health Records/standards , Electronic Health Records/trends , Female , Humans , Infant , Infant, Newborn , International Classification of Diseases/standards , International Classification of Diseases/trends , Machine Learning/standards , Male , Time Factors , Treatment Outcome
7.
Cancer Res ; 75(10): 2039-48, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25808868

ABSTRACT

Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/analogs & derivatives , NF-kappa B p50 Subunit/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor Decoy Receptors/genetics , Animals , B-Cell Lymphoma 3 Protein , Base Sequence , Binding Sites , Cell Line, Tumor , Dacarbazine/pharmacology , Drug Resistance, Neoplasm , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/metabolism , Humans , Male , Mice, Nude , Promoter Regions, Genetic , Protein Binding , Receptors, Tumor Necrosis Factor, Member 10c , Temozolomide , Transcriptional Activation , Tumor Necrosis Factor Decoy Receptors/chemistry , Tumor Necrosis Factor Decoy Receptors/metabolism , Xenograft Model Antitumor Assays
8.
Cell Cycle ; 14(4): 566-76, 2015.
Article in English | MEDLINE | ID: mdl-25590437

ABSTRACT

The apical damage kinase, ATR, is activated by replication stress (RS) both in response to DNA damage and during normal S-phase. Loss of function studies indicates that ATR acts to stabilize replication forks, block cell cycle progression and promote replication restart. Although checkpoint failure and replication fork collapse can result in cell death, no direct cytotoxic pathway downstream of ATR has previously been described. Here, we show that ATR directly reduces survival by inducing phosphorylation of the p50 (NF-κB1, p105) subunit of NF-кB and moreover, that this response is necessary for genome maintenance independent of checkpoint activity. Cell free and in vivo studies demonstrate that RS induces phosphorylation of p50 in an ATR-dependent but DNA damage-independent manner that acts to modulate NF-кB activity without affecting p50/p65 nuclear translocation. This response, evident in human and murine cells, occurs not only in response to exogenous RS but also during the unperturbed S-phase. Functionally, the p50 response results in inhibition of anti-apoptotic gene expression that acts to sensitize cells to DNA strand breaks independent of damage repair. Ultimately, loss of this pathway causes genomic instability due to the accumulation of chromosomal breaks. Together, the data indicate that during S-phase ATR acts via p50 to ensure that cells with elevated levels of replication-associated DNA damage are eliminated.


Subject(s)
DNA Replication/physiology , Genomic Instability/physiology , NF-kappa B p50 Subunit/metabolism , S Phase/physiology , Ataxia Telangiectasia Mutated Proteins/metabolism , Comet Assay , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Genomic Instability/genetics , Humans , Immunoblotting , Immunoprecipitation , Luciferases , Phosphorylation , RNA Interference , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
9.
Nanomedicine ; 10(1): 149-57, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23891990

ABSTRACT

A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. FROM THE CLINICAL EDITOR: GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles.


Subject(s)
Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Drug Delivery Systems , Glioma/drug therapy , Nanoparticles/chemistry , Animals , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Convection , Dacarbazine/administration & dosage , Dacarbazine/chemistry , Ferric Compounds/chemistry , Glioma/diagnostic imaging , Glioma/pathology , Humans , Magnetic Resonance Imaging , Mice , Nanoparticles/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Radiography , Rats , Temozolomide , Xenograft Model Antitumor Assays
10.
Nucleic Acids Res ; 41(2): 764-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180782

ABSTRACT

Phosphorylation of the NF-κB subunit, p50, is necessary for cytotoxicity in response to DNA methylation damage. Here, we demonstrate that serine 329 phosphorylation regulates the interaction of p50 with specific NF-κB binding elements based on the identity of a single κB-site nucleotide. Specifically, S329 phosphorylation reduces the affinity of p50 for κB-sites that have a cytosine (C) at the -1 position without affecting binding to sequences with a -1 adenine. The differential interaction between phospho-p50 and the -1 base regulates the downstream transcriptional response and underlies the inhibition of anti-apoptotic gene expression following DNA damage. In genes with multiple κB-sites, the presence of a single -1C κB-site enables inhibition of NF-κB-dependent activity. The data suggest that interaction between phospho-p50 and the -1 κB nucleotide facilitates cytotoxicity in response to DNA damage. Moreover, although conservation of the entire κB-site sequence is not seen across species, the identity of the -1 nt in critical anti-apoptotic genes is conserved such that the overall response to DNA damage is maintained.


Subject(s)
DNA Damage , NF-kappa B p50 Subunit/metabolism , NF-kappa B/metabolism , Animals , Binding Sites , Cell Line , DNA/chemistry , DNA/metabolism , Gene Expression Regulation , Mice , NF-kappa B p50 Subunit/chemistry , Nucleotides/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Serine/metabolism , Transcription, Genetic
11.
Mol Cell ; 44(5): 785-96, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22152481

ABSTRACT

The functional significance of the signaling pathway induced by O(6)-methylguanine (O(6)-MeG) lesions is poorly understood. Here, we identify the p50 subunit of NF-κB as a central target in the response to O(6)-MeG and demonstrate that p50 is required for S(N)1-methylator-induced cytotoxicity. In response to S(N)1-methylation, p50 facilitates the inhibition of NF-κB-regulated antiapoptotic gene expression. Inhibition of NF-κB activity is noted to be an S phase-specific phenomenon that requires the formation of O(6)-MeG:T mismatches. Chk1 associates with p50 following S(N)1-methylation, and phosphorylation of p50 by Chk1 results in the inhibition of NF-κB DNA binding. Expression of an unphosphorylatable p50 mutant blocks inhibition of NF-κB-regulated antiapoptotic gene expression and attenuates S(N)1-methylator-induced cytotoxicity. While O(6)-MeG:T-induced, p50-dependent signaling is not sufficient to induce cell death, this pathway sensitizes cells to the cytotoxic effects of DNA breaks.


Subject(s)
DNA Damage , DNA Methylation , NF-kappa B p50 Subunit/metabolism , Animals , Cell Death , Cell Line, Tumor , Humans , Mice , NF-kappa B p50 Subunit/antagonists & inhibitors , NF-kappa B p50 Subunit/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...