Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36992223

ABSTRACT

Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.

2.
Microscopy (Oxf) ; 69(6): 401-407, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-32525202

ABSTRACT

Here, we describe a method for tracking intracellular processing of small interfering RNA (siRNA) containing complexes using automated microscopy controls and image acquisition to minimize user effort and time. This technique uses fluorescence colocalization to monitor dual-labeled fluorescent siRNAs delivered by silica nanoparticles in different intracellular locations, including the early/late endosomes, fast/slow recycling endosomes, lysosomes and the endoplasmic reticulum. Combining the temporal association of siRNAs with each intracellular location, we reconstructed the intracellular pathways used in siRNA processing, and demonstrate how these pathways vary based on the chemical composition of the delivery vehicle.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Lysosomes/metabolism , RNA, Small Interfering/metabolism , HeLa Cells , Humans , Kinetics , Microscopy, Confocal
3.
Nucleic Acid Ther ; 30(1): 22-32, 2020 02.
Article in English | MEDLINE | ID: mdl-31718426

ABSTRACT

While small interfering RNAs (siRNAs) are commonly used for laboratory studies, development of siRNA therapeutics has been slower than expected, due, in part, to a still limited understanding of the endocytosis and intracellular trafficking of siRNA-containing complexes. With the recent characterization of multiple clathrin-/caveolin-independent endocytic pathways, that is, those mediated by Graf1, Arf6, and flotillin, it has become clear that the endocytic mechanism influences subsequent intracellular processing of the internalized cargo. To explore siRNA delivery in light of these findings, we developed a novel assay that differentiates uptake by each of the endocytic pathways and can be used to determine whether endocytosis by a pathway leads to the initiation of RNA interference (RNAi). Using Lipofectamine 2000 (LF2K), we determined the endocytosis pathway leading to active silencing (whether by clathrin, caveolin, Arf6, Graf1, flotillin, or macropinocytosis) across multiple cell types (HeLa, H1299, HEK293, and HepG2). We showed that LF2K is internalized by Graf1-, Arf6-, or flotillin-mediated endocytosis for the initiation of RNAi, depending on cell type. In addition, we found that a portion of siRNA-containing complexes is internalized by pathways that do not lead to initiation of silencing. Inhibition of these pathways enhanced intracellular levels of siRNAs with concomitant enhancement of silencing.


Subject(s)
Endocytosis/genetics , Gene Silencing/drug effects , Gene Transfer Techniques , RNA, Small Interfering/genetics , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Caveolins/genetics , Clathrin/genetics , Endocytosis/drug effects , GTPase-Activating Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , RNA Interference/drug effects , RNA Transport/drug effects , RNA Transport/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects
4.
Methods Mol Biol ; 1974: 41-56, 2019.
Article in English | MEDLINE | ID: mdl-31098994

ABSTRACT

In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.


Subject(s)
Argonaute Proteins/genetics , Neoplasms/genetics , RNA Interference , RNA, Small Interfering/genetics , Carboxypeptidases/genetics , HeLa Cells , Humans , Neoplasms/therapy , RNA, Double-Stranded/genetics , Ribonuclease III/genetics
5.
Article in English | MEDLINE | ID: mdl-27774502

ABSTRACT

Understanding the endocytosis and intracellular trafficking of short interfering RNA (siRNA) delivery vehicle complexes remains a critical bottleneck in designing siRNA delivery vehicles for highly active RNA interference (RNAi)-based therapeutics. In this study, we show that dextran functionalization of silica nanoparticles enhanced uptake and intracellular delivery of siRNAs in cultured cells. Using pharmacological inhibitors for endocytotic pathways, we determined that our complexes are endocytosed via a previously unreported mechanism for siRNA delivery in which dextran initiates scavenger receptor-mediated endocytosis through a clathrin/caveolin-independent process. Our findings suggest that siRNA delivery efficiency could be enhanced by incorporating dextran into existing delivery platforms to activate scavenger receptor activity across a variety of target cell types.

7.
FEBS J ; 281(1): 320-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24393396

ABSTRACT

In the development of RNA interference therapeutics, merely selecting short interfering RNA (siRNA) sequences that are complementary to the mRNA target does not guarantee target silencing. Current algorithms for selecting siRNAs rely on many parameters, one of which is asymmetry, often predicted through calculation of the relative thermodynamic stabilities of the two ends of the siRNA. However, we have previously shown that highly active siRNA sequences are likely to have particular nucleotides at each 5'-end, independently of their thermodynamic asymmetry. Here, we describe an algorithm for predicting highly active siRNA sequences based only on these two asymmetry parameters. The algorithm uses end-sequence nucleotide preferences and predicted thermodynamic stabilities, each weighted on the basis of training data from the literature, to rank the probability that an siRNA sequence will have high or low activity. The algorithm successfully predicts weakly and highly active sequences for enhanced green fluorescent protein and protein kinase R. Use of these two parameters in combination improves the prediction of siRNA activity over current approaches for predicting asymmetry. Going forward, we anticipate that this approach to siRNA asymmetry prediction will be incorporated into the next generation of siRNA selection algorithms.


Subject(s)
Algorithms , Carcinoma, Non-Small-Cell Lung/genetics , Gene Silencing , Green Fluorescent Proteins/antagonists & inhibitors , Lung Neoplasms/genetics , RNA, Small Interfering/genetics , eIF-2 Kinase/antagonists & inhibitors , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , DNA Primers/chemistry , Drug Design , Fluorescence , Green Fluorescent Proteins/genetics , Humans , Lung Neoplasms/metabolism , RNA Interference , RNA, Messenger , Thermodynamics , Tumor Cells, Cultured , eIF-2 Kinase/genetics
8.
Pharmaceuticals (Basel) ; 6(4): 440-68, 2013.
Article in English | MEDLINE | ID: mdl-23976875

ABSTRACT

While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...