Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 124: 112078, 2021 May.
Article in English | MEDLINE | ID: mdl-33947570

ABSTRACT

Soy isoflavone genistein (Gen) exerts beneficial effects against prostate cancer cells in vitro and in vivo. However, its use as a chemoprevention/therapeutic agent is largely limited due to its low bioavailability. In this study we synthesized two variants of a new delivery system, genistein-gold nanoparticles conjugates Gen@AuNPs1 and Gen@AuNPs2, by an environmentally friendly method, using a dual role of Gen to reduce Au3+ and stabilize the formed AuNPs, with no additional component. The formation of Gen@AuNPs was confirmed via UV-Vis spectroscopy, FTIR, and Raman spectra measurements. The spherical shape and uniform size of Gen@AuNPs1 and Gen@AuNPs2 (10 ± 2 and 23 ± 3 nm, respectively), were determined by transmission electron microscopy. The nano-conjugates also varied in hydrodynamic diameter (65.0 ± 1.7 and 153.0 ± 2.2 nm) but had similar negative zeta potential (-35.0 ± 2.5 and -37.0 ± 1.6 mV), as measured by dynamic light scattering. The Gen loading was estimated to be 46 and 48%, for Gen@AuNPs1 and Gen@AuNPs2, respectively. The antiproliferative activities of GenAuNPs were confirmed by MTT test in vitro on three malignant prostate carcinoma cell lines (PC3, DU 145, and LNCaP), while selectivity toward malignant phenotype was confirmed using non-cancerous MRC-5 cells. Flow cytometric analysis showed that the inhibition on cell proliferation of more potent Gen@AuNPs1 nano-conjugate is comparable with the effects of free Gen. In conclusion, the obtained results, including physicochemical characterization of newly synthesized AuNPs loaded with Gen, cytotoxicity, and IC50 assessments, indicate their stability and bioactivity as an antioxidant and anti-prostate cancer agent, with low toxicity against human primary cells.


Subject(s)
Metal Nanoparticles , Prostatic Neoplasms , Cell Line , Genistein/pharmacology , Gold , Humans , Male , Prostatic Neoplasms/drug therapy
2.
Colloids Surf B Biointerfaces ; 155: 341-348, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28454063

ABSTRACT

The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353nm] and [370-410nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells' surfaces.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Hyphae/drug effects , Metal Nanoparticles/chemistry , Silver/pharmacology , Spores, Fungal/drug effects , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Candida albicans/growth & development , Candida albicans/metabolism , Candida albicans/ultrastructure , Hyphae/growth & development , Hyphae/metabolism , Hyphae/ultrastructure , Kinetics , Optical Imaging/methods , Silver/chemistry , Silver/metabolism , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Spores, Fungal/ultrastructure , Synchrotrons , Tryptophan/chemistry , Ultraviolet Rays
3.
Colloids Surf B Biointerfaces ; 135: 742-750, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26340364

ABSTRACT

Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that it is possible to detect these hybrid nanostructures within Escherichia coli cells.


Subject(s)
Escherichia coli/chemistry , Gold/chemistry , Metal Nanoparticles , Spectrophotometry, Ultraviolet/methods , Tryptophan/chemistry , Microscopy, Electron, Transmission
4.
J Nanosci Nanotechnol ; 8(7): 3511-5, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19051904

ABSTRACT

The influence of shape and dielectric property of surrounding media on surface plasmon absorption band of silver nanoparticles was studied. Spherical silver nanoparticles (d = 5.6 nm) synthesized in water using NaBH4 as a reducing agent are transferred in non-polar solvent (chloroform) with phase-transfer reagent oleylamine. The absorption spectrum of oleylamine-capped silver nanoparticles dispersed in chloroform shows a strong surface plasmon resonance band that is 19 nm red-shifted compared to unmodified particles in water. The values for peak position and corresponding half widths are compared with theoretical calculations based on Mie theory. Prismatic and plate-like silver nanoparticles were synthesized in water using trisodium citrate as a reducing agent and cetyltrimethylammonium bromide as stabilizer. Due to structural anisotropy of prismatic and plate-like silver nanoparticles three surface plasmon resonance bands were observed in absorption spectrum. Nanocomposites consisting of non-spherical silver nanoparticles and polyvinyl alcohol exhibit different optical properties compared to water colloid. Instead of three surface plasmon bands, nanocomposite film has only one peak at 460 nm. Reason for appearance of single surface plasmon resonance band in nanocomposite film was discussed according to Maxwell-Garnet theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...