Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
OMICS ; 26(11): 586-588, 2022 11.
Article in English | MEDLINE | ID: mdl-36315198

ABSTRACT

In this perspective analysis, we strive to answer the following question: how can we advance integrative biology research in the 21st century with lessons from animal science? At the University of Ljubljana, Biotechnical Faculty, Department of Animal Science, we share here our three lessons learned in the two decades from 2002 to 2022 that we believe could inform integrative biology, systems science, and animal science scholarship in other countries and geographies. Cultivating multiomics knowledge through a conceptual lens of integrative biology is crucial for life sciences research that can stand the test of diverse biological, clinical, and ecological contexts. Moreover, in an era of the current COVID-19 pandemic, animal nutrition and animal science, and the study of their interactions with human health (and vice versa) through integrative biology approaches hold enormous prospects and significance for systems medicine and ecosystem health.


Subject(s)
Biological Science Disciplines , COVID-19 , Animals , Humans , History, 21st Century , Ecosystem , Pandemics , COVID-19/epidemiology , Biology
2.
Environ Microbiol ; 23(3): 1527-1540, 2021 03.
Article in English | MEDLINE | ID: mdl-33331146

ABSTRACT

Type IV pili (T4P) are bacterial surface-exposed appendages that have been extensively studied in Gram-negative pathogenic bacteria. Despite recent sequencing efforts, little is known regarding these structures in non-pathogenic anaerobic Gram-positive species, particularly commensals of the mammalian gut. Early studies revealed that T4P in two ruminal Gram-positive species are associated with growth on cellulose, suggesting possible associations of T4P with substrate utilization patterns. In the present study, genome sequences of 118 taxonomically diverse, mainly Gram-positive, bacterial strains isolated from anaerobic (gastrointestinal) environments, have been analysed. The genes likely to be associated with T4P biogenesis were analysed and grouped according to T4P genetic organization. In parallel, consortia of Carbohydrate Active enZYmes (CAZymes) were also analysed and used to predict carbohydrate utilization abilities of selected strains. The predictive power of this approach was additionally confirmed by experimental assessment of substrate-related growth patterns of selected strains. Our analysis revealed that T4P systems with diverse genetic organization are widespread among Gram-positive anaerobic non-pathogenic bacteria isolated from different environments, belonging to two phylogenetically distantly related phyla: Firmicutes and Actinobacteria.


Subject(s)
Fimbriae Proteins , Fimbriae, Bacterial , Bacteria , Carbohydrates , Fimbriae, Bacterial/genetics , Gram-Negative Bacteria
3.
Int J Syst Evol Microbiol ; 70(3): 1769-1776, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31976852

ABSTRACT

To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/isolation & purification , Genome Size , Malaysia , Nucleic Acid Hybridization , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
4.
Food Technol Biotechnol ; 56(3): 312-328, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30510475

ABSTRACT

Keratin is a complex and structurally stable protein found in human and animal hard tissues, such as feathers, wool, hair, hoof and nails. Some of these, like feathers and wool, represent one of the main sources of protein-rich waste with significant potential to be transformed into value-added products such as feed, fertilizers or bioenergy. A major limitation impeding valorization of keratinous substrates is their recalcitrant structure and resistance to hydrolysis by common proteases. However, specialized keratinolytic enzymes produced by some microorganisms can efficiently degrade these substrates. Keratinases have already found a purpose in pharmaceutical, textile and leather industries. However, their wider implementation in other processes, such as cost-effective (pre)treatment of poultry waste, still requires optimization of production and performance of the available enzymes. Here we present a comprehensive review covering molecular properties and characteristics of keratinases, their classification, traditional and novel approaches in discovery of novel enzymes, production, characterization, improvement and biotechnological applications.

5.
PLoS One ; 8(6): e65333, 2013.
Article in English | MEDLINE | ID: mdl-23750253

ABSTRACT

BACKGROUND: Ruminococcus flavefaciens is an important fibre-degrading bacterium found in the mammalian gut. Cellulolytic strains from the bovine rumen have been shown to produce complex cellulosome structures that are associated with the cell surface. R. flavefaciens 007 is a highly cellulolytic strain whose ability to degrade dewaxed cotton, but not Avicel cellulose, was lost following initial isolation in the variant 007S. The ability was recovered after serial subculture to give the cotton-degrading strain 007C. This has allowed us to investigate the factors required for degradation of this particularly recalcitrant form of cellulose. METHODOLOGY/PRINCIPAL FINDINGS: The major proteins associated with the bacterial cell surface and with the culture supernatant were analyzed for R. flavefaciens 007S and 007C grown with cellobiose, xylan or Avicel cellulose as energy sources. Identification of the proteins was enabled by a draft genome sequence obtained for 007C. Among supernatant proteins a cellulosomal GH48 hydrolase, a rubrerthyrin-like protein and a protein with type IV pili N-terminal domain were the most strongly up-regulated in 007C cultures grown on Avicel compared with cellobiose. Strain 007S also showed substrate-related changes, but supernatant expression of the Pil protein and rubrerythrin in particular were markedly lower in 007S than in 007C during growth on Avicel. CONCLUSIONS/SIGNIFICANCE: This study provides new information on the extracellular proteome of R. flavefaciens and its regulation in response to different growth substrates. Furthermore it suggests that the cotton cellulose non-degrading strain (007S) has altered regulation of multiple proteins that may be required for breakdown of cotton cellulose. One of these, the type IV pilus was previously shown to play a role in adhesion to cellulose in R. albus, and a related pilin protein was identified here for the first time as a major extracellular protein in R. flavefaciens.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Extracellular Space/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Proteome/metabolism , Ruminococcus/cytology , Ruminococcus/metabolism , Bacterial Proteins/genetics , Cellulose/metabolism , Fimbriae, Bacterial/genetics , Hemerythrin/metabolism , Multigene Family , Proteome/genetics , Rubredoxins/metabolism , Ruminococcus/genetics , Ruminococcus/growth & development
6.
Folia Microbiol (Praha) ; 57(4): 253-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22528299

ABSTRACT

Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.


Subject(s)
Aesculus/chemistry , Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/drug effects , Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Proanthocyanidins/pharmacology , Rosaceae/chemistry , Vaccinium macrocarpon/chemistry , Campylobacter Infections/microbiology , Campylobacter jejuni/growth & development , Disk Diffusion Antimicrobial Tests , Humans
7.
Folia Microbiol (Praha) ; 57(4): 363-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22528313

ABSTRACT

One of the main mechanisms of nanoparticle toxicity is known to be the generation of reactive oxygen species (ROS) which primarily damage cell membranes. However, very limited data on membrane effects in anaerobic environments (where ROS could not be the cause of membrane damage) are available. In the following study, rumen anaerobe Ruminococcus flavefaciens 007C was used as a bacterial model to assess the potential effects of Al(2)O(3) and TiO(2) nanoparticles on membranes in an anaerobic environment. Fatty acid profiles of cultures after exposure to Al(2)O(3) or TiO(2) nanoparticles were analyzed and compared with the profiles of non-exposed cultures or cultures exposed to bulk materials. Analysis revealed dose-effect changes in membrane composition exclusively when cells were exposed to Al(2)O(3) nanoparticles in a concentration range of 3-5 g/L, but were not present in cultures exposed to bulk material. On the other hand, the tested concentrations of nano-TiO(2) did not significantly affect the membrane profile of the exposed bacterium. The results suggest the possibility that Al(2)O(3) induces changes in bacterial membranes by direct physical interaction, which was supported by TEM image analysis.


Subject(s)
Aluminum Oxide/toxicity , Fatty Acids/metabolism , Nanoparticles/toxicity , Ruminococcus/drug effects , Ruminococcus/metabolism , Anaerobiosis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Metabolome/drug effects , Nanoparticles/ultrastructure , Titanium/toxicity
8.
Folia Microbiol (Praha) ; 57(4): 367-70, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22528314

ABSTRACT

The expression of Ruminococcus flavefaciens 007S cellulases in different incubation time points (growth stages) and their substrate inducibility were analyzed by comparing the zymogram expression profiles of cultures grown on insoluble cellulose (Avicel) with cellobiose-grown cultures. The molecular weights of the enzymes were compared to (putative) cellulases encoded in the R. flavefaciens FD-1 genome.


Subject(s)
Bacterial Proteins/genetics , Cellulases/genetics , Ruminococcus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cellobiose/metabolism , Cellulases/chemistry , Cellulases/metabolism , Cellulose/metabolism , Enzyme Assays , Gene Expression , Molecular Sequence Data , Molecular Weight , Protein Structure, Tertiary , Ruminococcus/chemistry , Ruminococcus/genetics , Ruminococcus/growth & development
9.
Acta Chim Slov ; 59(1): 83-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-24061176

ABSTRACT

A bacterial model system (Pseudomonas putida DSM 50026) was used in this research to assess potential effect of five selected chemically diverse environmental pollutants on cell membranes. Long chain fatty acid profiles of cultures exposed to environmentally relevant concentrations of atrazine (ATR), metolachlor (MET), pentachlorobiphenyl (PCB), hexachlorobenzene (HCB) and fluoranthene (FL), were analyzed and compared to non-exposed cultures. To assess sensitivity of membrane-based responses, the impact of each toxicant on culture growth was also followed spectrophotometrically. Results revealed changes in fatty acid profiles when cells were exposed to PCB, HCB and FL in concentrations below the inhibitory levels. Moreover, the observed membrane responses were similar to the ones previously associated with adaptation to some membrane-active compounds. On the other hand, exposure of cells to any of the two herbicides, ATR or MET, did not induce any significant changes in fatty acid profiles. However, when combined with a commonly used fertilizer compound, NH4NO3 growth impairment was observed. Synergistic effect of the two herbicides with NH4NO3 might be a consequence of changes in fatty acid profile increasing membrane fluidity, likely induced by NH4+ ions.

10.
PLoS One ; 6(10): e25329, 2011.
Article in English | MEDLINE | ID: mdl-22043282

ABSTRACT

BACKGROUND: The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA. PRINCIPAL FINDINGS: As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located. CONCLUSIONS: The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.


Subject(s)
Cellulose/metabolism , Rumen/microbiology , Animals , Biodiversity , Cattle , Cellulose/genetics , Diet , Gram-Positive Bacterial Infections/microbiology , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Ruminococcus/genetics , Ruminococcus/isolation & purification , Species Specificity
11.
Environ Sci Technol ; 45(15): 6617-24, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21710986

ABSTRACT

In the current study, the toxicity mechanism of nanosized CuO (nCuO) to the freshwater ciliated protozoa Tetrahymena thermophila was studied. Changes in fatty acid profile, lipid peroxidation metabolites and reactive oxygen species (ROS) were measured. Bulk CuO and CuSO(4) served as controls for size and solubility and 3,5-dichorophenol (3,5-DCP) as a control for a chemical known to directly affect the membrane composition. Exposure to all copper compounds induced the generation of ROS, whereas nCuO was most potent. The latter effect was not solely explained by solubilized Cu-ions and was apparently particle-related. 24 h exposure of protozoa to 80 mg/L of nCuO (EC50) significantly decreased the proportion of two major unsaturated fatty acids (UFA) (C18:3 cis-6,9,12, C18:2 cis-9,12), while it increased the relative amount of two saturated fatty acids (SFA) (C18:0, C16:0). Analogous effect was not observed when protozoa were exposed to equitoxic suspensions of bulk CuO, Cu-ions or 3,5-DCP. As changes in the UFA:SFA upon exposure of protozoa to nCuO were not detected at 2 h exposure and no simultaneous dose- or time-dependent lipid peroxidation occurred, it is likely that one of the adaptation mechanisms of protozoa to nCuO was lowering membrane fluidity by the inhibition of de novo synthesis of fatty acid desaturases. This is the first study of the effects of nanoparticles on the membrane fatty acid composition.


Subject(s)
Copper/toxicity , Environmental Exposure/analysis , Fatty Acids/metabolism , Nanoparticles/toxicity , Tetrahymena thermophila/drug effects , Tetrahymena thermophila/metabolism , Biological Availability , Fatty Acids/chemistry , Fatty Acids, Unsaturated/metabolism , Ions , Lipid Peroxidation/drug effects , Membranes/drug effects , Nanoparticles/ultrastructure , Particle Size , Reactive Oxygen Species/metabolism
12.
Acta Chim Slov ; 57(4): 767-74, 2010 Dec.
Article in English | MEDLINE | ID: mdl-24061876

ABSTRACT

Cellulose is the main structural component of plant cell wall and thus the most abundant carbohydrate in nature. However, extracting the energy from this abundant source is limited by its recalcitrant nature. The hydrolysis of plant cell wall requires synergystic action of different enzymes, including multiple cellulases, hemicellulases, pectinases, etc. Meanwhile aerobic cellulolytic microorganisms release large quantities of synergistically acting free enzymes in their environment, most anaerobic microorganisms evolved more efficient strategies to optimize the process of plant cell wall degradation, for example production of extracellular multi-enzyme complexes (cellulosomes). Cellulosomes consist of at least one core structural protein, named scaffoldin, which firmly binds numerous enzymatic subunits, and usually also plays a major role in substrate binding. Although the general structure of cellulosomes seems universal, differences in number and identity of complex components do exist among microorganisms. The article surveys the current knowledge about cellulosomes, focusing on three best investigated cellulolytic clostridia, one representative of ruminal bacteria and novel findings concerning anaerobic fungi. Efforts in construction of artificially engineered cellulosomal systems (designer cellulosomes) as well as their biotechnological potential are also discussed.

13.
Microbiology (Reading) ; 155(Pt 10): 3461-3463, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19608610

ABSTRACT

The membrane fatty acid composition of Escherichia coli becomes conditioned during periodic temperature cycling between 37 and 8 degrees C. After several cycles of temperature change, the bacteria become locked into a low-temperature physiology. Even after a prolonged incubation at high temperature the membrane fatty acid composition of conditioned cells was similar to that of cold-stressed cells.


Subject(s)
Cell Membrane/chemistry , Escherichia coli/chemistry , Escherichia coli/radiation effects , Fatty Acids/analysis , Cold Temperature , Escherichia coli/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...