Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 15(1): 47, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384471

ABSTRACT

Thiamine (vitamin B1) is an essential micronutrient in the human diet, found both naturally and as a fortification ingredient in many foods and supplements. However, it is susceptible to degradation due to heat, light, alkaline pH, and sulfites, among effects from other food matrix components, and its degradation has both nutritional and sensory implications as in foods. Thiamine storage stability in solution was monitored over time to determine the effect of solution pH and thiamine concentration on reaction kinetics of degradation without the use of buffers, which are known to affect thiamine stability independent of pH. The study directly compared thiamine stability in solutions prepared with different pHs (3 or 6), concentrations (1 or 20 mg/mL), and counterion in solution (NO3-, Cl-, or both), including both commercially available salt forms of thiamine (thiamine mononitrate and thiamine chloride hydrochloride). Solutions were stored at 25, 40, 60, and 80 °C for up to one year, and degradation was quantified by high-performance liquid chromatography (HPLC) over time, which was then used to calculate degradation kinetics. Thiamine was significantly more stable in pH 3 than in pH 6 solutions. In pH 6 solutions, stability was dependent on initial thiamine concentration, with the 20 mg/mL thiamine salt solutions having an increased reaction rate constant (kobs) compared to the 1 mg/mL solutions. In pH 3 solutions, kobs was not dependent on initial concentration, attributed to differences in degradation pathway dependent on pH. Activation energies of degradation (Ea) were higher in pH 3 solutions (21-27 kcal/mol) than in pH 6 solutions (18-21 kcal/mol), indicating a difference in stability and degradation pathway due to pH. The fundamental reaction kinetics of thiamine reported in this study provide a basis for understanding thiamine stability and therefore improving thiamine delivery in many foods containing both natural and fortified thiamine.

2.
Food Res Int ; 140: 110084, 2021 02.
Article in English | MEDLINE | ID: mdl-33648302

ABSTRACT

Thiamine is a water-soluble essential micronutrient, and grains are the main source of thiamine in the human diet. Refining processes reduce thiamine content; therefore, many flours are enriched with thiamine. Further processes, such as heating (baking), destabilize thiamine. In doughs, thiamine partitions into the aqueous phase (dough liquor). The objective of this study was to document temperature effects on thiamine degradation reaction kinetics in dough liquor. Two concentrations of thiamine mononitrate (1 and 20 mg/mL) were added to dough liquor (the supernatant of centrifuged bread dough) and control solutions (water and pH 6-adjusted water). Samples were stored at controlled temperatures (25, 40, 60, 70, and 80 °C) for up to 6 months, and thiamine degradation was quantified over time using high-performance liquid chromatography. Thiamine degradation kinetics, including the observed reaction rate constant (kobs) and activation energy (Ea) of degradation, were calculated. Dough liquor ingredients stabilized thiamine in most cases when compared to the pH 6 control solutions, especially in the samples containing more thiamine. Thiamine degradation in dough liquor generally followed similar trends to those in the controls: thiamine degraded more quickly in the 20 mg/mL solutions than in 1 mg/mL solutions (with one exception), and increasing temperature led to increased thiamine degradation. However, kobs ranged from 0.0019-0.22 days-1 in dough liquor and 0.0003-0.46 in control solutions, with differences attributed to interactions with components in the dough liquor. The Ea of thiamine degradation was ~90 kJ/mol in the control samples regardless of vitamin concentration but differed between vitamin concentrations in the dough liquor (95 and 60 kJ/mol in 1 and 20 mg/mL solutions, respectively), indicating that a different degradation pathway may have occurred in dough liquor. The different thiamine stability trends in dough liquor compared to control solutions indicate that food formulation has a substantial impact on the chemical behaviors of thiamine.


Subject(s)
Bread , Flour , Humans , Kinetics , Thiamine , Water
3.
Food Chem ; 338: 128061, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32950870

ABSTRACT

The crystallization of amorphous sucrose in food products can greatly affect the quality of foods. This study investigated the effects of polyphenols on the crystallization of amorphous sucrose lyophiles. Monoglycosylated, polyglycosylated, and aglycones with differing polyphenol backbones were studied, in addition to bulk food ingredients containing a high concentration of polyphenols. Solutions containing sucrose with and without polyphenols (1 and 5%) were lyophilized, stored in RH-controlled desiccators, and analyzed by x-ray diffraction. Moisture sorption studies, Karl Fischer titration, and differential scanning calorimetry were also completed. Polyphenol addition delayed sucrose crystallization by up to 6.4x compared to the control. Structure played the most significant role in efficacy of polyphenols in delaying sucrose crystallization, more than Tg or hygroscopicity. Glycosylated polyphenols were more effective than aglycones, polyphenols with (2,1) glycosidic linkages were more effective than those with (6,1) linkages, and bulk food ingredients were the most effective at delaying sucrose crystallization.


Subject(s)
Polyphenols/chemistry , Sucrose/chemistry , Adsorption , Calorimetry, Differential Scanning , Crystallization , Freeze Drying , Water/chemistry
4.
Int J Mol Sci ; 21(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316991

ABSTRACT

This study investigated thiamine degradation in thiamine mononitrate (TMN):polymer solid dispersions, accounting for the physical state of the vitamin and the recrystallization tendency of TMN in these dispersions. Results were compared with those from solid dispersions containing a different salt form of thiamine (thiamine chloride hydrochloride (TClHCl)). TMN:polymer dispersions were prepared by lyophilizing solutions containing TMN and amorphous polymers (pectin and PVP (polyvinylpyrrolidone)). Samples were stored in controlled temperature and relative humidity (RH) environments for eight weeks and monitored periodically by X-ray diffraction and high performance liquid chromatography (HPLC). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Similar to the TClHCl:polymer dispersions, thiamine was more chemically labile in the amorphous state than the crystalline state, when present in lower proportions in amorphous TMN:polymer dispersions despite increasing Tg values, when environmental storage conditions exceeded the Tg of the dispersion, and when co-formulated with PVP compared to pectin. When thiamine remained as an amorphous solid, chemical stability of thiamine did not differ as a function of counterion present (TMN vs. TClHCl). However, storage at 75% RH led to hydration of thiamine:PVP dispersions, and the resulting pH of the solutions as a function of thiamine salt form led to a higher chemical stability in the acidic TClHCl samples than in the neutral TMN samples.


Subject(s)
Thiamine/chemistry , Crystallization
5.
Food Res Int ; 136: 109608, 2020 10.
Article in English | MEDLINE | ID: mdl-32846628

ABSTRACT

Spices, herbs, and seasoning blends containing both crystalline and amorphous ingredients are common throughout the food industry but may exhibit unwanted clumping or caking during storage. Crystalline and amorphous ingredients are known to respond differently to increases in relative humidity (RH) and temperature. The aim of this study was to better characterize what happens to moisture sorption behaviors, water-solid interactions, and physical stability when crystalline and amorphous ingredients are co-formulated in seasoning blends. Spices, herbs, and seasoning blends, 25 in total, were studied individually and in blends of increasing complexity (binary, ternary, and quaternary) with sucrose, salt, and maltodextrin. The effects of increasing temperature and RH on moisture content, moisture sorption profiles, water activity (aw), glass transition temperature (Tg), including Gordon-Taylor modeling, physical appearance, and degree of clumping were measured. Crossover points, the temperature at which the aw of the amorphous ingredient(s) and the deliquescence RH of the crystalline ingredient(s) in a blend intersect, were also calculated. Caking was observed when storage conditions (RH and/or temperature) exceeded the Tg of a blend or the deliquescence RH of a crystalline ingredient in the blend. When amorphous and crystalline ingredients were blended, synergistic moisture sorption and increased caking was observed. When multiple crystalline ingredients were present, mutual deliquescence further increased the sensitivity of the blend to moisture. When environmental conditions exceeded the crossover temperature, degree of caking increased, and physical appearance was altered due to the induced deliquescence of the crystalline ingredient(s) by the aw of the amorphous ingredient(s). In general, as complexity of blends increased, sensitivity to moisture also increased, and physical stability of the blends decreased. The results of this study provide valuable information for increasing the physical stability of complex seasoning blends based on moisture sorption behaviors.


Subject(s)
Spices/analysis , Temperature , Water/analysis , Food Storage , Onions/chemistry , Polysaccharides/analysis , Powders/chemistry , Salts/analysis , Sucrose/analysis , Transition Temperature , Volatile Organic Compounds/analysis
6.
Int J Mol Sci ; 21(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824791

ABSTRACT

Thiamine is an essential micronutrient, but delivery of the vitamin in supplements or foods is challenging because it is unstable under heat, alkaline pH, and processing/storage conditions. Although distributed as a crystalline ingredient, thiamine chloride hydrochloride (TClHCl) likely exists in the amorphous state, specifically in supplements. Amorphous solids are generally less chemically stable than their crystalline counterparts, which is an unexplored area related to thiamine delivery. The objective of this study was to document thiamine degradation in the amorphous state. TClHCl:polymer dispersions were prepared by lyophilizing solutions containing TClHCl and amorphous polymers (pectin and PVP (poly[vinylpyrrolidone])). Samples were stored in controlled temperature (30-60 °C) and relative humidity (11%) environments for 8 weeks and monitored periodically by X-ray diffraction (to document physical state) and HPLC (to quantify degradation). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Thiamine was more labile in the amorphous state than the crystalline state and when present in lower proportions in amorphous polymer dispersions, despite increasing Tg values. Thiamine was more stable in pectin dispersions than PVP dispersions, attributed to differences in presence and extent of intermolecular interactions between TClHCl and pectin. The results of this study can be used to control thiamine degradation in food products and supplements to improve thiamine delivery and decrease rate of deficiency.


Subject(s)
Thiamine/analogs & derivatives , Humidity , Pectins/chemistry , Polymerization , Povidone/chemistry , Solvents/chemistry , Temperature , Thiamine/chemistry
7.
Food Chem X ; 3: 100050, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31497756

ABSTRACT

The crystallization of amorphous sucrose can be problematic in food products. This study explored how emulsifiers (a range of sucrose esters, polysorbates, and soy lecithin) impact the moisture sorption and crystallization of amorphous sucrose lyophiles. Solutions containing sucrose with and without emulsifiers were lyophilized, stored in desiccators, and analyzed by X-ray diffraction, infrared spectroscopy, and polarized light microscopy over time. Moisture sorption techniques, Karl Fischer titration, and differential scanning calorimetry were also used. Different emulsifiers had varying impacts on sucrose crystallization tendencies. Polysorbates enhanced sucrose crystallization, decreasing both the RH and time at which sucrose crystallized. These lyophiles did not collapse upon crystallization, unlike all other samples, indicating the likelihood of variations in nucleation sites and crystal growth. All other emulsifiers stabilized amorphous sucrose by up to a factor of 7x, even in the presence of increased water absorbed and independent of glass transition temperatures, indicating emulsifier structure governed sucrose crystallization tendencies.

8.
Food Res Int ; 112: 443-456, 2018 10.
Article in English | MEDLINE | ID: mdl-30131156

ABSTRACT

Two types of thiamine (vitamin B1) salts, thiamine mononitrate (TMN) and thiamine chloride hydrochloride (TClHCl), are used to enrich and fortify food products. Both of these thiamine salt forms are sensitive to heat, alkali, oxygen, and radiation, but differences in stability between them have been noted. It was hypothesized that stability differences between the two thiamine salts could be explained by differences in solubility, solution pH, and activation energies for degradation. This study directly compared the stabilities of TMN and TClHCl in solution over time by documenting the impact of concentration and storage temperature on thiamine degradation and calculating reaction kinetics. Solutions were prepared containing five concentrations of each thiamine salt (1, 5, 10, 20, and 27 mg/mL), and three additional concentrations of TClHCl: 100, 300, and 500 mg/mL. Samples were stored at 25, 40, 60, 70, and 80 °C for up to 6 months. Degradation was quantified over time by high-performance liquid chromatography, and percent thiamine remaining was used to calculate reaction kinetics. First-order reaction kinetics were found for both TMN and TClHCl. TMN degraded significantly faster than TClHCl at all concentrations and temperatures. For example, in 27 mg/mL solutions after 5 days at 80 °C, only 32% of TMN remained compared to 94% of TClHCl. Activation energies and solution pHs were 21-25 kcal/mol and pH 5.36-6.96 for TMN and 21-32 kcal/mol and pH 1.12-3.59 for TClHCl. TClHCl degradation products had much greater sensory contributions than TMN degradation products, including intense color change and potent aromas, even with considerably less measured vitamin loss. Different peak patterns were present in HPLC chromatograms between TMN and TClHCl, indicating different degradation pathways and products. The stability of essential vitamins in foods is important, even more so when degradation contributes to sensory changes, and this study provides a direct comparison of the stability of the two thiamine salts used to fortify foods in environments relevant to the processing and shelf-life of many foods.


Subject(s)
Food Additives/chemistry , Thiamine/analogs & derivatives , Thiamine/chemistry , Vitamin B Complex/chemistry , Color , Drug Stability , Humans , Hydrogen-Ion Concentration , Kinetics , Odorants/analysis , Olfactory Perception , Smell , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...