Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 643275, 2021.
Article in English | MEDLINE | ID: mdl-34025604

ABSTRACT

A novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2019, causing an ongoing, rapidly spreading global pandemic. Worldwide, vaccination is now expected to provide containment of the novel virus, resulting in an antibody-mediated immunity. To verify this, serological antibody assays qualitatively as well as quantitatively depicting the amount of generated antibodies are of great importance. Currently available test methods are either laboratory based or do not have the ability to indicate an estimation about the immune response. To overcome this, a novel and rapid serological magnetic immunodetection (MID) point-of-care (PoC) assay was developed, with sensitivity and specificity comparable to laboratory-based DiaSorin Liaison SARS-CoV-2 S1/S2 IgG assay. To specifically enrich human antibodies against SARS-CoV-2 in immunofiltration columns (IFCs) from patient sera, a SARS-CoV-2 S1 antigen was transiently produced in plants, purified and immobilized on the IFC. Then, an IgG-specific secondary antibody could bind to the retained antibodies, which was finally labeled using superparamagnetic nanoparticles. Based on frequency magnetic mixing technology (FMMD), the magnetic particles enriched in IFC were detected using a portable FMMD device. The obtained measurement signal correlates with the amount of SARS-CoV-2-specific antibodies in the sera, which could be demonstrated by titer determination. In this study, a MID-based assay could be developed, giving qualitative as well as semiquantitative results of SARS-CoV-2-specific antibody levels in patient's sera within 21 min of assay time with a sensitivity of 97% and a specificity of 92%, based on the analysis of 170 sera from hospitalized patients that were tested using an Food and Drug Administration (FDA)-certified chemiluminescence assay.

2.
Sci Rep ; 7(1): 11991, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931852

ABSTRACT

Pichia pastoris is a simple and powerful expression platform that has the ability to produce a wide variety of recombinant proteins, ranging from simple peptides to complex membrane proteins. A well-established fermentation strategy is available comprising three main phases: a batch phase, followed by a glycerol fed-batch phase that increases cell density, and finally an induction phase for product expression using methanol as the inducer. We previously used this three-phase strategy at the 15-L scale to express three different AMA1-DiCo-based malaria vaccine candidates to develop a vaccine cocktail. For two candidates, we switched to a two-phase strategy lacking the intermediate glycerol fed-batch phase. The new strategy not only provided a more convenient process flow but also achieved 1.5-fold and 2.5-fold higher space-time yields for the two candidates, respectively, and simultaneously reduced the final cell mass by a factor of 1.3, thus simplifying solid-liquid separation. This strategy also reduced the quantity of host cell proteins that remained to be separated from the two vaccine candidates (by 34% and 13%, respectively), thus reducing the effort required in the subsequent purification steps. Taken together, our new fermentation strategy increased the overall fermentation performance for the production of two different AMA1-DiCo-based vaccine candidates.


Subject(s)
Antigens, Protozoan/metabolism , Biotechnology/methods , Malaria Vaccines/metabolism , Membrane Proteins/metabolism , Pichia/metabolism , Protozoan Proteins/metabolism , Technology, Pharmaceutical/methods , Antigens, Protozoan/genetics , Fermentation , Malaria Vaccines/genetics , Membrane Proteins/genetics , Pichia/genetics , Protozoan Proteins/genetics , Vaccines, Synthetic/genetics , Vaccines, Synthetic/metabolism
3.
Malar J ; 15(1): 279, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27188716

ABSTRACT

BACKGROUND: The high incidence and mortality rate of malaria remains a serious burden for many developing countries, and a vaccine that induces durable and highly effective immune responses is, therefore, desirable. An earlier analysis of the stage-specific in vitro efficacy of a malaria vaccine candidate cocktail (VAMAX) considered the general properties of complex multi-component, multi-stage combination vaccines in rabbit immunization experiments using a hyper-immunization protocol featuring six consecutive boosts and a strong, lipopolysaccharide-based adjuvant. This follow-up study investigates the effect of antigen dose on the in vitro efficacy of the malaria vaccine cocktail using a conventional vaccination scheme (one prime and two boosts) and a human-compatible adjuvant (Alhydrogel(®)). RESULTS: IgG purified from rabbits immunized with 0.1, 1, 10 or 50 µg doses of the VAMAX vaccine candidate cocktail was analysed for total IgG and antigen-cocktail-specific titers. An increase in cocktail-specific titers was observed between 0.1 and 1 µg and between 10 and 50 µg, whereas no significant difference in titers was observed between 1 and 10 µg. Antigen component-specific antibody titers and stage-specific in vitro efficacy assays were performed with pooled IgG from animals immunized with 1 and 50 µg of the VAMAX cocktail. Here, the component-specific antibody levels showed clear dose dependency whereas the determined stage-specific in vitro IC50 values (as a correlate of efficacy) were only dependent on the titer amounts of stage-specific antibodies. CONCLUSIONS: The stage-specific in vitro efficacy of the VAMAX cocktail strongly correlates with the corresponding antigen-specific titers, which for their part depend on the antigen dose, but there is no indication that the dose has an effect on the in vitro efficacy of the induced antibodies. A comparison of these results with those obtained in the previous hyper-immunization study (where higher levels of antigen-specific IgG were observed) suggests that there is a significant need to induce an immune response matching efficacy requirements, especially for a PfAMA1-based blood stage vaccine, by using higher doses, better adjuvants and/or better formulations.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan/blood , Immunization Schedule , Malaria Vaccines/immunology , Animals , Dose-Response Relationship, Immunologic , Follow-Up Studies , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Rabbits
4.
PLoS One ; 10(7): e0131456, 2015.
Article in English | MEDLINE | ID: mdl-26147206

ABSTRACT

Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 µg/ml), the blood stage (40-60 µg/ml) and the sexual stage (1.75 µg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Animals , Immunization , Malaria, Falciparum/immunology , Rabbits
5.
Front Plant Sci ; 6: 1169, 2015.
Article in English | MEDLINE | ID: mdl-26779197

ABSTRACT

Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route toward the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification, and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs, and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here, we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility, and stability using fluorescent fusion proteins. Our results have been implemented for the evidence-based iterative design and expression of vaccine candidates combining suitable P. falciparum antigen domains. The antigens were also produced, purified, and characterized in further studies by taking advantage of the scalability of this platform.

6.
Biotechnol J ; 9(11): 1435-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25200253

ABSTRACT

Plants have emerged as low-cost production platforms suitable for vaccines targeting poverty-related diseases. Besides functional efficacy, the stability, yield, and purification process determine the production costs of a vaccine and thereby the feasibility of plant-based production. We describe high-level plant production and functional characterization of a malaria vaccine candidate targeting the pre-erythrocytic stage of Plasmodium falciparum. CCT, a fusion protein composed of three sporozoite antigens (P. falciparum cell traversal protein for ookinetes and sporozoites [PfCelTOS], P. falciparum circumsporozoite protein [PfCSP], and P. falciparum thrombospondin-related adhesive protein [PfTRAP]), was transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, accumulated to levels up to 2 mg/g fresh leaf weight (FLW), was thermostable up to 80°C and could be purified to >95% using a simple two-step procedure. Reactivity of sera from malaria semi-immune donors indicated the immunogenic conformation of the purified fusion protein consisting of PfCelTOS, PfCSP_TSR, PfTRAP_TSR domains (CCT) protein. Total IgG from the CCT-specific mouse immune sera specifically recognized P. falciparum sporozoites in immunofluorescence assays and induced up to 35% inhibition in hepatocyte invasion assays. Featuring domains from three promising sporozoite antigens with different roles (attachment and cell traversal) in the hepatocyte invasion process, CCT has the potential to elicit broader immune responses against the pre-erythrocytic stage of P. falciparum and represents an interesting new candidate, also as a component of multi-stage, multi-subunit malaria vaccine cocktails.


Subject(s)
Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Plasmodium falciparum/immunology , Protozoan Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Sporozoites/immunology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Hot Temperature , Humans , Malaria Vaccines , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mice , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...