Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 288(1964): 20211601, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34847768

ABSTRACT

Energetic expenditure is an important factor in animal locomotion. Here we test the hypothesis that fishes control tail-beat kinematics to optimize energetic expenditure during undulatory swimming. We focus on two energetic indices used in swimming hydrodynamics, cost of transport and Froude efficiency. To rule out one index in favour of another, we use computational-fluid dynamics models to compare experimentally observed fish kinematics with predicted performance landscapes and identify energy-optimized kinematics for a carangiform swimmer, an anguilliform swimmer and larval fishes. By locating the areas in the predicted performance landscapes that are occupied by actual fishes, we found that fishes use combinations of tail-beat frequency and amplitude that minimize cost of transport. This energy-optimizing strategy also explains why fishes increase frequency rather than amplitude to swim faster, and why fishes swim within a narrow range of Strouhal numbers. By quantifying how undulatory-wave kinematics affect thrust, drag, and power, we explain why amplitude and frequency are not equivalent in speed control, and why Froude efficiency is not a reliable energetic indicator. These insights may inspire future research in aquatic organisms and bioinspired robotics using undulatory propulsion.


Subject(s)
Fishes , Models, Biological , Animals , Biomechanical Phenomena , Fishes/physiology , Hydrodynamics , Swimming/physiology
2.
Front Immunol ; 12: 622516, 2021.
Article in English | MEDLINE | ID: mdl-33679766

ABSTRACT

Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Macrophages/immunology , Rabies virus/physiology , Rabies/immunology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Anti-Inflammatory Agents , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Differentiation , Cells, Cultured , Cholinergic Agents , Coculture Techniques , Humans , Interleukin-10/metabolism , Lymphocyte Activation , NF-kappa B/metabolism , Neuroimmunomodulation , Protein Binding , Receptors, Cell Surface/metabolism , Signal Transduction , Th2 Cells/immunology
3.
PLoS Biol ; 18(7): e3000462, 2020 07.
Article in English | MEDLINE | ID: mdl-32697779

ABSTRACT

Most fish swim with body undulations that result from fluid-structure interactions between the fish's internal tissues and the surrounding water. Gaining insight into these complex fluid-structure interactions is essential to understand how fish swim. To this end, we developed a dedicated experimental-numerical inverse dynamics approach to calculate the lateral bending moment distributions for a large-amplitude undulatory swimmer that moves freely in three-dimensional space. We combined automated motion tracking from multiple synchronised high-speed video sequences, computation of fluid dynamic stresses on the swimmer's body from computational fluid dynamics, and bending moment calculations using these stresses as input for a novel beam model of the body. The bending moment, which represent the system's net actuation, varies over time and along the fish's central axis due to muscle actions, passive tissues, inertia, and fluid dynamics. Our three-dimensional analysis of 113 swimming events of zebrafish larvae ranging in age from 3 to 12 days after fertilisation shows that these bending moment patterns are not only relatively simple but also strikingly similar throughout early development and from fast starts to periodic swimming. This suggests that fish larvae may produce and adjust swimming movements relatively simply, yet effectively, while restructuring their neuromuscular control system throughout their rapid development.


Subject(s)
Numerical Analysis, Computer-Assisted , Swimming/physiology , Zebrafish/physiology , Animals , Biomechanical Phenomena , Fertilization , Larva/physiology , Models, Biological , Motion , Tail
4.
New Phytol ; 228(2): 586-595, 2020 10.
Article in English | MEDLINE | ID: mdl-32506423

ABSTRACT

Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.


Subject(s)
Adaptation, Physiological , Hydrodynamics , Animals , Biomechanical Phenomena , Rheology , Suction
5.
J Exp Biol ; 222(Pt 14)2019 07 17.
Article in English | MEDLINE | ID: mdl-31315925

ABSTRACT

Most fish species use fast starts to escape from predators. Zebrafish larvae perform effective fast starts immediately after hatching. They use a C-start, where the body curls into a C-shape, and then unfolds to accelerate. These escape responses need to fulfil a number of functional demands, under the constraints of the fluid environment and the larva's body shape. Primarily, the larvae need to generate sufficient escape speed in a wide range of possible directions, in a short-enough time. In this study, we examined how the larvae meet these demands. We filmed fast starts of zebrafish larvae with a unique five-camera setup with high spatiotemporal resolution. From these videos, we reconstructed the 3D swimming motion with an automated method and from these data calculated resultant hydrodynamic forces and, for the first time, 3D torques. We show that zebrafish larvae reorient mostly in the first stage of the start by producing a strong yaw torque, often without using the pectoral fins. This reorientation is expressed as the body angle, a measure that represents the rotation of the complete body, rather than the commonly used head angle. The fish accelerates its centre of mass mostly in stage 2 by generating a considerable force peak while the fish 'unfolds'. The escape direction of the fish correlates strongly with the amount of body curvature in stage 1, while the escape speed correlates strongly with the duration of the start. This may allow the fish to independently control the direction and speed of the escape.


Subject(s)
Escape Reaction , Orientation , Swimming , Zebrafish/physiology , Animals , Biomechanical Phenomena , Torque , Video Recording
6.
J Exp Biol ; 221(Pt 7)2018 04 06.
Article in English | MEDLINE | ID: mdl-29487155

ABSTRACT

Fish make C-starts to evade predator strikes. Double-bend (DB) C-starts consist of three stages: Stage 1, in which the fish rapidly bends into a C-shape; Stage 2, in which the fish bends in the opposite direction; and a variable Stage 3. In single-bend (SB) C-starts, the fish immediately straightens after Stage 1. Despite fish moving in three-dimensional (3D) space, fast-start responses of adult fish have mainly been studied in a horizontal plane. Using automated 3D tracking of multi-camera high-speed video sequences, we show that both SB and DB fast-starts by adult female least killifish (Heterandria formosa) often contain a significant vertical velocity component, and large changes in pitch (DB up to 43 deg) and roll (DB up to 77 deg) angles. Upwards and downwards elevation changes are correlated with changes in pitch angle of the head; movement in the horizontal plane is correlated with changes in yaw angle of the head. With respect to the stimulus, escape heading correlates with the elevation of the fish at the onset of motion. Irrespective of the initial orientation, fish can escape in any horizontal direction. In many cases, the centre of mass barely accelerates during Stage 1. However, it does accelerate in the final direction of the escape in other instances, indicating that Stage 1 can serve a propulsive role in addition to its preparatory role for Stage 2. Our findings highlight the importance of large-scale 3D analyses of fast-start manoeuvres of adult fish in uncovering the versatility of fish escape repertoire.


Subject(s)
Cyprinodontiformes/physiology , Escape Reaction , Animals , Biomechanical Phenomena , Female , Orientation , Predatory Behavior
7.
J Exp Biol ; 221(Pt 1)2018 01 11.
Article in English | MEDLINE | ID: mdl-29326114

ABSTRACT

Most larvae of bony fish are able to swim almost immediately after hatching. Their locomotory system supports several vital functions: fish larvae make fast manoeuvres to escape from predators, aim accurately during suction feeding and may migrate towards suitable future habitats. Owing to their small size and low swimming speed, larval fish operate in the intermediate hydrodynamic regime, which connects the viscous and inertial flow regimes. They experience relatively strong viscous effects at low swimming speeds, and relatively strong inertial effects at their highest speeds. As the larvae grow and increase swimming speed, a shift occurs towards the inertial flow regime. To compensate for size-related limitations on swimming speed, fish larvae exploit high tail beat frequencies at their highest speeds, made possible by their low body inertia and fast neuromuscular system. The shifts in flow regime and body inertia lead to changing functional demands on the locomotory system during larval growth. To reach the reproductive adult stage, the developing larvae need to adjust to and perform the functions necessary for survival. Just after hatching, many fish larvae rely on yolk and need to develop their feeding systems before the yolk is exhausted. Furthermore, the larvae need to develop and continuously adjust their sensory, neural and muscular systems to catch prey and avoid predation. This Review discusses the hydrodynamics of swimming in the intermediate flow regime, the changing functional demands on the locomotory system of the growing and developing larval fish, and the solutions that have evolved to accommodate these demands.


Subject(s)
Fishes/physiology , Swimming , Animals , Biomechanical Phenomena , Fishes/growth & development , Larva/growth & development , Larva/physiology
8.
PLoS One ; 11(1): e0146682, 2016.
Article in English | MEDLINE | ID: mdl-26752597

ABSTRACT

Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics.


Subject(s)
Imaging, Three-Dimensional , Motion , Torque , Zebrafish/physiology , Algorithms , Animals , Automation , Biomechanical Phenomena/physiology , Computer Simulation , Fertilization , Larva/physiology , Reproducibility of Results , Video Recording
9.
J R Soc Interface ; 12(110): 0479, 2015 09 06.
Article in English | MEDLINE | ID: mdl-26269230

ABSTRACT

Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2-5 days post-fertilization (dpf). Larvae at 4-5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2-0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers.


Subject(s)
Models, Biological , Swimming/physiology , Zebrafish/physiology , Animals , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...