Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
AoB Plants ; 62014 Mar 31.
Article in English | MEDLINE | ID: mdl-24876298

ABSTRACT

Excess water in the form of waterlogged soil or deeper submergence (generically termed 'flooding') influences plant growth, survival and species distribution in many natural ecosystems. It also has a negative impact on crop growth and yield since many agricultural species are flooding intolerant. The often devastating effect of flooding on plant performance is related to its interference with gas exchange between the plant and its environment. This results in energy deficiency and carbohydrate starvation. In the near future, flooding frequency is expected to increase due to global climate change and the human population is expected to increase to ∼9 billion people by 2050. The need for increased agricultural productivity is self-evident and this will require a better mechanistic understanding of the interaction between plants and abiotic stresses such as flooding. We argue that, in seeking this understanding, we should not restrict the research to model species such as rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). This is because some stress-tolerance mechanisms are not found in these species. Examples are given of how flooding tolerance is achieved by non-model species of Rumex and Rorippa that have evolved to cope with flooding in natural environments. These findings will add usefully to the spread of resources available to plant breeding programmes aimed at improving flooding tolerance in crop plants.

2.
Curr Opin Plant Biol ; 16(5): 647-53, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23830867

ABSTRACT

The investigation of flooding survival strategies in model, crop and wild plant species has yielded insights into molecular, physiological and developmental mechanisms of soil flooding (waterlogging) and submergence survival. The antithetical flooding escape and quiescence strategies of deepwater and submergence tolerant rice (Oryza sativa), respectively, are regulated by members of a clade of ethylene responsive factor transcriptional activators. This knowledge paved the way for the discovery that these proteins are targets of a highly conserved O2-sensing protein turnover mechanism in Arabidopsis thaliana. Further examples of genes that regulate transcription, root and shoot metabolism or development during floods have emerged. With the rapid advancement of genomic technologies, the mining of natural genetic variation in flooding tolerant wild species may ultimately benefit crop production.


Subject(s)
Oxygen/metabolism , Plant Physiological Phenomena , Plants/genetics , Signal Transduction , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Crops, Agricultural , Floods , Genetic Variation , Genomics , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Plant Shoots/metabolism , Plant Shoots/physiology
3.
Plant Biol (Stuttg) ; 15(3): 426-35, 2013 May.
Article in English | MEDLINE | ID: mdl-23574304

ABSTRACT

Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.


Subject(s)
Adaptation, Physiological , Ethylenes/metabolism , Floods , Oxygen/metabolism , Plant Physiological Phenomena , Carbon Dioxide/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Signal Transduction
4.
New Phytol ; 197(4): 1029-1031, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23373859
5.
New Phytol ; 190(2): 299-310, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21108648

ABSTRACT

• The exploitation of natural variation in Arabidopsis thaliana (Arabidopsis) provides a huge potential for the identification of the molecular mechanisms underlying this variation as a result of the availability of a vast array of genetic and genomic resources for this species. Eighty-six Arabidopsis accessions were screened for natural variation in flooding tolerance. This forms the first step towards the identification and characterization of the role of candidate genes contributing to flooding tolerance. • Arabidopsis accessions at the 10-leaf stage were subjected to complete submergence in the dark. Survival curves were plotted to estimate median lethal times as a measure of tolerance. Flooding-associated survival parameters, such as root and shoot oxygen content, initial carbohydrate content and petiole elongation under water, were also measured. • There was a significant variation in submergence tolerance among Arabidopsis accessions. However, the order of tolerance did not correlate with root and shoot oxygen content or initial amounts of shoot starch and total soluble sugars. A negative correlation was observed between submergence tolerance and underwater petiole elongation. • Arabidopsis accessions show considerable variation in the ability to tolerate complete submergence, making it a good species in which to identify and characterize genes and to study mechanisms that contribute to survival under water.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Genetic Variation , Carbohydrate Metabolism , Cell Respiration , Darkness , Hypocotyl/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Proportional Hazards Models , Time Factors
6.
J Exp Bot ; 60(4): 1179-90, 2009.
Article in English | MEDLINE | ID: mdl-19240103

ABSTRACT

The regulation of photosynthetic acclimation to canopy density was investigated in tobacco canopies and in tobacco and Arabidopsis plants with part of their foliage experimentally shaded. Both species acclimated to canopy light gradients and partial shading by allocating photosynthetic capacity to leaves in high light and adjusting chloroplast organization to the local light conditions. An investigation was carried out to determine whether signalling mediated by photoreceptors, sugars, cytokinin, and nitrate is involved in and necessary for proper photosynthetic acclimation. No evidence was found for a role for sugars, or for nitrate. The distribution of cytokinins in tobacco stands of contrasting density could be explained in part by irradiance-dependent delivery of cytokinins through the transpiration stream. Functional studies using a comprehensive selection of Arabidopsis mutants and transgenics showed that normal wild-type responses to partial shading were retained when signalling mediated by photoreceptors or cytokinins was disrupted. This indicates that these pathways probably operate in a redundant manner. However, the reduction of the chlorophyll a/b ratio in response to local shade was completely absent in the Arabidopsis Ws-2 accession mutated in PHYTOCHROME D and in the triple phyAphyCphyD mutant. Moreover, cytokinin receptor mutants also showed a reduced response, suggesting a previously unrecognized function of phyD and cytokinins.


Subject(s)
Acclimatization , Cytokinins/metabolism , Photoreceptors, Plant/metabolism , Photosynthesis , Plant Leaves/physiology , Arabidopsis/genetics , Chloroplasts/metabolism , Electron Transport , Mutation/genetics , Plant Transpiration , Plants, Genetically Modified , Nicotiana/physiology
7.
Ann Bot ; 103(2): 353-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18697756

ABSTRACT

BACKGROUND AND AIMS: Plant species from various taxa 'escape' from low oxygen conditions associated with submergence by a suite of traits collectively called the low oxygen escape syndrome (LOES). The expression of these traits is associated with costs and benefits. Thus far, remarkably few studies have dealt with the expected benefits of the LOES. METHODS: Young plants were fully submerged at initial depths of 450 mm (deep) or 150-240 mm (shallow). Rumex palustris leaf tips emerged from the shallow flooding within a few days, whereas a slight lowering of shallow flooding was required to expose R. acetosa leaf tips to the atmosphere. Shoot biomass and petiole porosity were measured for all species, and treatments and data from the deep and shallow submergence treatments were compared with non-flooded controls. KEY RESULTS: R. palustris is characterized by submergence-induced enhanced petiole elongation. R. acetosa lacked this growth response. Upon leaf tip emergence, R. palustris increased its biomass, whereas R. acetosa did not. Furthermore, petiole porosity in R. palustris was twice as high as in R. acetosa. CONCLUSIONS: Leaf emergence restores gas exchange between roots and the atmosphere in R. palustris. This occurs to a much lesser extent in R. acetosa and is attributable to its lower petiole porosity and therefore limited internal gas transport. Leaf emergence resulting from fast petiole elongation appears to benefit biomass accumulation if these plants contain sufficient aerenchyma in petioles and roots to facilitate internal gas exchange.


Subject(s)
Floods , Plant Leaves/growth & development , Rumex/growth & development , Biomass , Plant Leaves/cytology , Plant Shoots/growth & development , Porosity
8.
Funct Plant Biol ; 36(8): 665-681, 2009 Aug.
Article in English | MEDLINE | ID: mdl-32688679

ABSTRACT

Flooding regimes of different depths and durations impose selection pressures for various traits in terrestrial wetland plants. Suites of adaptive traits for different flooding stresses, such as soil waterlogging (short or long duration) and full submergence (short or long duration - shallow or deep), are reviewed. Synergies occur amongst traits for improved internal aeration, and those for anoxia tolerance and recovery, both for roots during soil waterlogging and shoots during submergence. Submergence tolerance of terrestrial species has recently been classified as either the Low Oxygen Quiescence Syndrome (LOQS) or the Low Oxygen Escape Syndrome (LOES), with advantages, respectively, in short duration or long duration (shallow) flood-prone environments. A major feature of species with the LOQS is that shoots do not elongate upon submergence, whereas those with the LOES show rapid shoot extension. In addition, plants faced with long duration deep submergence can demonstrate aspects of both syndromes; shoots do not elongate, but these are not quiescent, as new aquatic-type leaves are formed. Enhanced entries of O2 and CO2 from floodwaters into acclimated leaves, minimises O2 deprivation and improves underwater photosynthesis, respectively. Evolution of 'suites of traits' are evident in wild wetland species and in rice, adapted to particular flooding regimes.

9.
Annu Rev Plant Biol ; 59: 313-39, 2008.
Article in English | MEDLINE | ID: mdl-18444902

ABSTRACT

Flooding is an environmental stress for many natural and man-made ecosystems worldwide. Genetic diversity in the plant response to flooding includes alterations in architecture, metabolism, and elongation growth associated with a low O(2) escape strategy and an antithetical quiescence scheme that allows endurance of prolonged submergence. Flooding is frequently accompanied with a reduction of cellular O(2) content that is particularly severe when photosynthesis is limited or absent. This necessitates the production of ATP and regeneration of NAD(+) through anaerobic respiration. The examination of gene regulation and function in model systems provides insight into low-O(2)-sensing mechanisms and metabolic adjustments associated with controlled use of carbohydrate and ATP. At the developmental level, plants can escape the low-O(2) stress caused by flooding through multifaceted alterations in cellular and organ structure that promote access to and diffusion of O(2). These processes are driven by phytohormones, including ethylene, gibberellin, and abscisic acid. This exploration of natural variation in strategies that improve O(2) and carbohydrate status during flooding provides valuable resources for the improvement of crop endurance of an environmental adversity that is enhanced by global warming.


Subject(s)
Acclimatization , Disasters , Genetic Variation , Plant Physiological Phenomena , Plants/genetics , Cell Physiological Phenomena , Citric Acid Cycle , Glycolysis , Oxygen/metabolism , Plant Development , Plant Shoots/growth & development , Plant Shoots/metabolism , Plants/metabolism
10.
New Phytol ; 170(4): 767-77, 2006.
Article in English | MEDLINE | ID: mdl-16684237

ABSTRACT

Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O(2) deficiency by increasing porosity, and induction of a barrier to radial O(2) loss (ROL) in basal zones, to enhance longitudinal O(2) diffusion towards the root tip. Changes in root-zone gas composition that might induce these acclimatizations, namely low O(2), elevated ethylene, ethylene-low O(2) interactions, and high CO(2), were evaluated in hydroponic experiments. Neither low O(2) (0 or 0.028 mol m(-3) O(2)), ethylene (0.2 or 2.0 microl l(-1)), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O(2) and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.


Subject(s)
Acclimatization/physiology , Carbon Dioxide/physiology , Ethylenes/metabolism , Oryza/growth & development , Oxygen/physiology , Carbon Dioxide/metabolism , Nitrogen/metabolism , Oryza/metabolism , Oxygen/metabolism , Photosynthesis , Plant Roots/metabolism , Plant Roots/physiology , Signal Transduction , Water/metabolism
11.
New Phytol ; 170(2): 213-26, 2006.
Article in English | MEDLINE | ID: mdl-16608449

ABSTRACT

Flooding is a widespread phenomenon that drastically reduces the growth and survival of terrestrial plants. The dramatic decrease of gas diffusion in water compared with in air is a major problem for terrestrial plants and limits the entry of CO(2) for photosynthesis and of O(2) for respiration. Responses to avoid the adverse effects of submergence are the central theme in this review. These include underwater photosynthesis, aerenchyma formation and enhanced shoot elongation. Aerenchyma facilitates gas diffusion inside plants so that shoot-derived O(2) can diffuse to O(2)-deprived plant parts, such as the roots. The underwater gas-exchange capacity of leaves can be greatly enhanced by a thinner cuticle, reorientation of the chloroplasts towards the epidermis and increased specific leaf area (i.e. thinner leaves). At the same time, plants can outgrow the water through increased shoot elongation, which in some species is preceded by an adjustment of leaf angle to a more vertical position. The molecular regulatory networks involved in these responses, including the putative signals to sense submergence, are discussed and suggestions made on how to unravel the mechanistic basis of the induced expression of various adaptations that alleviate O(2) shortage underwater.


Subject(s)
Arabidopsis/physiology , Water/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Carbon Dioxide/metabolism , Ethylenes/metabolism , Hydrogen Peroxide/metabolism , Immersion , Light , Oxygen/metabolism , Photosynthesis/physiology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/physiology , Rumex/anatomy & histology , Rumex/growth & development , Rumex/physiology
12.
Plant Mol Biol ; 56(3): 423-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15604754

ABSTRACT

Thirteen alpha-expansin genes were isolated from Rumex palustris , adding to the six already documented for this species. Five alpha-expansin genes were selected for expression studies in various organs/tissues of R. palustris , with a focus on roots exposed to aerated or O2)-deficient conditions, using real-time RT-PCR. Several cases of differential expression of alpha-expansin genes in the various root types of R. palustris were documented, and the identity of the dominant transcript differed between root types (i.e., tap root vs. lateral roots vs. adventitious roots). Several genes were expressed differentially in response to low O2. In situ hybridizations showed expansin mRNA expression in the oldest region of the tap root was localized to cells near the vascular cambium; this being the first report of expansin expression associated with secondary growth in roots. In situ hybridization also showed abundant expression of expansin mRNA in the most apical 1 mm of adventitious roots. Such early expression of expansin mRNA in cells soon after being produced by the root apex presumably enables cell wall loosening in the elongation zone of roots. In addition, expression of some expansin mRNAs increased in 'mature zones' of roots; these expansins might be involved in root hair formation or in formation of lateral root primordia. The present findings support the notion that large gene families of alpha-expansins enable flexibility in expression for various organs and tissues as a normal part of plant development, as well as in response to abiotic stress.


Subject(s)
Plant Proteins/genetics , Plant Roots/genetics , Rumex/genetics , Acclimatization/drug effects , Acclimatization/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , In Situ Hybridization , Molecular Sequence Data , Oxygen/pharmacology , Phylogeny , Plant Roots/growth & development , Plant Structures/genetics , Plant Structures/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rumex/growth & development , Sequence Analysis, DNA
13.
Plant Biol (Stuttg) ; 6(2): 201-5, 2004.
Article in English | MEDLINE | ID: mdl-15045672

ABSTRACT

Plant competition for light is a commonly occurring phenomenon in natural and agricultural vegetations. It is typically size-asymmetric, meaning that slightly larger individuals receive a disproportionate share of the light, leaving a limited amount of light for the initially smaller individuals. As a result, size inequalities of such stands increase with competition intensity. A plant's ability to respond morphologically to the presence of neighbour plants with enhanced shoot elongation, the so-called shade avoidance response, acts against the development of size inequalities. This has been shown experimentally with transgenic plants that cannot sense neighbours and, therefore, show no shade avoidance responses. Stands of such transgenic plants showed a much stronger development of size inequalities at high plant densities than did wild type (WT) stands. However, the transgenic plants used in these experiments displayed severely hampered growth rates and virtually no response to neighbours. In order to more precisely study the impact of this phenotypic plasticity on size inequality development, experiments required plants that have normal growth rates and reduced, but not absent, shade avoidance responses. We made use of an ethylene-insensitive, transgenic tobacco genotype (Tetr) that has wild type growth rates and moderately reduced shade avoidance responses to neighbours. Here, we show that the development of size inequalities in monocultures of these plants is not affected unambiguously different from wild type monocultures. Plots of Tetr plants developed higher inequalities for stem length than did WT, but monocultures of the two genotypes had identical CV (Coefficient of Variance) values for shoot biomass that increased with plant density. Therefore, even though reduced shade avoidance capacities led to the expected higher size inequalities for stem length, this does not necessarily lead to increased size inequalities for shoot biomass.


Subject(s)
Ethylenes/pharmacology , Nicotiana/growth & development , Plant Growth Regulators/pharmacology , Analysis of Variance , Genotype , Plant Leaves/drug effects , Plant Leaves/growth & development , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/growth & development , Nicotiana/anatomy & histology , Nicotiana/drug effects
14.
Plant J ; 33(2): 341-52, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12535347

ABSTRACT

Rumex palustris responds to total submergence by increasing the elongation rate of young petioles. This favours survival by shortening the duration of submergence. Underwater elongation is stimulated by ethylene entrapped within the plant by surrounding water. However, abnormally fast extension rates were found to be maintained even when leaf tips emerged above the floodwater. This fast post-submergence growth was linked to a promotion of ethylene production that is presumed to compensate for losses brought about by ventilation. Three sources of ACC contributed to post-submergence ethylene production in R. palustris: (i) ACC that had accumulated in the roots during submergence and was transported in xylem sap to the shoot when stomata re-opened and transpiration resumed, (ii) ACC that had accumulated in the shoot during the preceding period of submergence and (iii) ACC produced de novo in the shoot following de-submergence. This new production of ethylene was associated with increased expression of an ACC synthase gene (RP-ACS1) and an ACC oxidase gene (RP-ACO1), increased ACC synthase activity and a doubling of ACC oxidase activity, measured in vitro. Out of seven species of Rumex examined, a de-submergence upsurge in ethylene production was seen only in shoots of those that had the ability to elongate fast when submerged.


Subject(s)
Adaptation, Physiological , Ethylenes/biosynthesis , Rumex/growth & development , Rumex/metabolism , Water/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Disasters , Ecology , Ethylenes/metabolism , Gene Expression Regulation, Plant , Lyases/genetics , Lyases/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Transpiration , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Species Specificity
15.
Ann Bot ; 91 Spec No: 205-11, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12509341

ABSTRACT

Rumex palustris has the capacity to respond to complete submergence with hyponastic (upward) growth and stimulated elongation of petioles. These adaptive responses allow survival of this plant in habitats with sustained high water levels by re-establishing contact with the aerial environment. Accumulated ethylene in submerged petioles interacts with ethylene receptor proteins and operates as a reliable sensor for the under-water environment. Further downstream in the transduction pathway, a fast and substantial decrease of the endogenous abscisic acid concentration and a certain threshold level of endogenous auxin and gibberellin are required for hyponastic growth and petiole elongation. Interactions of these plant hormones results in a significant increase of the in vitro cell wall extensibility in submerged petioles. Furthermore, the pattern of transcript accumulation of a R. palustris alpha-expansin gene correlated with the pattern of petiole elongation upon submergence.


Subject(s)
Plant Growth Regulators/physiology , Plant Shoots/physiology , Rumex/physiology , Adaptation, Physiological , Signal Transduction , Water
16.
New Phytol ; 147(3): 497-504, 2000 Sep.
Article in English | MEDLINE | ID: mdl-33862947

ABSTRACT

In a study on the mechanism of stimulated petiole elongation in submerged plants, oxygen concentrations in petioles of the flood-tolerant plant Rumex palustris were measured with micro-electrodes. Short-term submergence lowered petiole partial oxygen pressure to c. 19 kPa whereas prolonged submergence under continuous illumination depressed oxygen levels to c. 8-12 kPa after 24 h. Oxygen levels in petioles depended on the presence of the lamina, even in submerged conditions, and on available light. In darkness, petiole oxygen levels in submerged plants dropped quickly to values as low as 0.5-4 kPa. It is hypothesized that prolonged submergence in the light is accompanied by a decrease in carbon dioxide in the petiole. Submergence-enhanced petiolar elongation rate was compared with emergent plants. Peak daily elongation rates occurred at the end of the dark period in emergent plants, but in the middle of the light period in submerged plants. We suggest that this shift in daily elongation pattern is induced by dependence of growth on photosynthetically derived oxygen in submerged plants. Implications of reduced oxygen for ethylene production are raised. Levels of 1- aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene sensitivity are cited as potential factors in hypoxia-induced ethylene release.

17.
Oecologia ; 115(3): 359-365, 1998 Jul.
Article in English | MEDLINE | ID: mdl-28308427

ABSTRACT

The impact of elevated ethylene concentrations and darkness on the growth and development of shoot organs of Ammophila breviligulata was investigated under experimental conditions in a complete two-way design. The results were compared with data of partially sand buried plants. Enhanced ethylene concentrations and sand burial stimulated the formation of new stem nodes, a prerequisite for burial-induced shoot elongation. However, internode elongation itself could not be promoted by the phytohormone ethylene, by darkness, or by their interaction. Sand burial inhibited the formation of rhizomes and tillers and the investment in root and rhizome biomass. Darkness mimicked this effect for the number of rhizomes and the biomass allocated to roots and rhizomes, indicating that the change in light regime upon sand burial may play an important role in the signal transduction chain that leads to a different allocation pattern in A. breviligulata. The results are discussed within the context of alternative signals that might initiate the internode elongation response in sand-buried A. breviligulata plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...