Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 96(4): 1125-30, 1991 Aug.
Article in English | MEDLINE | ID: mdl-16668308

ABSTRACT

Seedlings of maize (Zea mays L. cv WF9 x Mo 17) growing at low water potentials in vermiculite contained greatly increased proline concentrations in the primary root growth zone. Proline levels were particularly high toward the apex, where elongation rates have been shown to be completely maintained over a wide range of water potentials. Proline concentration increased even in quite mild treatments and reached 120 millimolal in the apical millimeter of roots growing at a water potential of -1.6 megapascal. This accounted for almost half of the osmotic adjustment in this region. Increases in concentration of other amino acids and glycinebetaine were comparatively small. We have assessed the relative contributions of increased rates of proline deposition and decreased tissue volume expansion to the increases in proline concentration. Proline content profiles were combined with published growth velocity distributions to calculate net proline deposition rate profiles using the continuity equation. At low water potential, proline deposition per unit length increased by up to 10-fold in the apical region of the growth zone compared to roots at high water potential. This response accounted for most of the increase in proline concentration in this region. The results suggest that osmotic adjustment due to increased proline deposition plays an important role in the maintenance of root elongation at low water potentials.

2.
Plant Physiol ; 93(4): 1329-36, 1990 Aug.
Article in English | MEDLINE | ID: mdl-16667621

ABSTRACT

Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an alternative to external applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant deficient in carotenoid biosynthesis (vp 5) were used to reduce the endogenous ABA content in the growing zones of the primary root and shoot at low water potentials. Experiments were performed on 30 to 60 hour old seedlings that were transplanted into vermiculite which had been preadjusted to water potentials of approximately -1.6 megapascals (roots) or -0.3 megapascals (shoots). Growth occurred in the dark at near-saturation humidity. Results of experiments using the inhibitor and mutant approaches were very similar. Reduced ABA content by either method was associated with inhibition of root elongation and promotion of shoot elongation at low water potentials, compared to untreated and wild-type seedlings at the same water potential. Elongation rates and ABA contents at high water potential were little affected. The inhibition of shoot elongation at low water potential was completely prevented in fluridone-treated seedlings during the first five hours after transplanting. The results indicate that ABA accumulation plays direct roles in both the maintenance of primary root elongation and the inhibition of shoot elongation at low water potentials.

SELECTION OF CITATIONS
SEARCH DETAIL
...