Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 5(1): 200-5, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22190404

ABSTRACT

Supercritical nitrile hydrolysis can be used for both, amide and acid production as well as waste water treatment, as the hydrolysis products show good biodegradability. The conventional process at ambient conditions requires large amounts of mineral acid or base. Approaches that use supercritical water as a green solvent without a catalyst have been investigated over recent years. Findings for valeronitrile hydrolysis presented recently showed promising reaction rates and valeric acid yields. In an attempt to further maximize product yield and to better understand the impact of the pH, reactions in dilute sulfuric acid (0.01 mol L(-1)) were performed in a continuous high-pressure laboratory-scale apparatus at 400-500 °C, 30 MPa, and a maximum residence time of 100 s. Results from both reaction media were compared with regard to productivity and sustainability.


Subject(s)
Nitriles/chemistry , Pentanes/chemistry , Catalysis , Hydrolysis , Kinetics , Pentanoic Acids/chemistry , Valerates/chemistry , Water/chemistry
2.
Chemphyschem ; 12(18): 3578-83, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22147498

ABSTRACT

The Mo(10-x)V(x)O(y) solid-solution systems (0≤x≤10) were studied by electron paramagnetic resonance spectroscopy. The results show the existence of paramagnetic vanadyl VO(2+) species, whose concentration becomes maximal for Mo(5)V(5)O(y·). A quantitative analysis of the [VO(2+)] concentration as a function of the Mo/V ratio allows it to characterize the prevailing defect chemistry in the Mo(10-x)V(x)O(y) system. In this respect, the semi-conducting properties of Mo(10-x)V(x)O(y) are p-type in an interval of Mo(9)V(1)O(y)-Mo(5)V(5)O(y) and switch into n-type because of the conduction electrons in a composition range of Mo(5)V(5)O(y)-Mo(1)V(9)O(y). Highest catalytic activity is obtained when vanadium acts as an acceptor center and oxygen vacancies ν(··)(O) are formed for reasons of charge compensation. In addition to the surface, ν(··)(O) and VO(2+) centers in the bulk have to be considered too for heterogeneous catalysis.

3.
Nanoscale ; 3(3): 1102-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183989

ABSTRACT

Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction. Thermogravimetric coupled mass spectroscopic analysis (TG-MS) of 1 revealed that methanol formed during the decomposition of 1 acts as a potential in situ reducing agent. Scanning electron microscopy (SEM) of the binary [Cu2O/MWCNT] nano-composite shows an increase of cuprous oxide loading depending on the precursor amount, along the periphery of the MWCNTs as well as formation of larger particle agglomerates. Transmission electron microscopy (TEM) of the sample shows crystalline domains of size 4-10 nm surrounded by an amorphous region within the larger particles. SEM and TEM of ternary [Cu2O/ZnO/MWCNT] clearly reveal that Cu2O nanoparticles are primarily deposited on ZnO rather than on MWCNTs. The catalytic activities of the [Cu2O/MWCNT] and [Cu2O/ZnO/MWCNT] binary and ternary composites were studied for the selective partial oxidation of ethanol to acetaldehyde with molecular oxygen. While using binary [Cu2O/MWCNT] (13.8 wt% Cu) as catalyst, acetaldehyde was obtained with a yield of 87% at 355 °C (selectivity 96% and conversion 91%). When nanoscale ZnO is present, the resulting [Cu2O/ZnO/MWCNT] composite shows preferential hydrogen and CO2 formation due to the fact that the dehydrogenation and total oxidation pathway is more favoured compared to the binary composite. Significant morphological changes of the catalyst during the catalytic process were observed.


Subject(s)
Copper/chemistry , Ethanol/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Catalysis , Materials Testing , Nanostructures/ultrastructure , Oxidation-Reduction , Particle Size
4.
ChemSusChem ; 3(1): 85-90, 2010.
Article in English | MEDLINE | ID: mdl-19924764

ABSTRACT

Nitriles act as important intermediates for the chemical industry and are accessible on a large scale through hydrocyanation or ammonoxidation. Nitrile hydrolysis yields amides and acids used in various applications. The conventional nitrile hydrolysis process relies on stoichiometric amounts of mineral acid or base which inherently deliver great amounts of waste brine. Improving this process towards green chemistry would require reaction conditions which can provide technically significant results without the use of catalysts. Under these conditions, the hydrolysis of valeronitrile in pure supercritical water was investigated. The experiments were performed in a continuous high pressure laboratory-scale apparatus at a temperature between 400 and 500 degrees C, 30 MPa pressure and maximal residence time of 100 s. Nitrile conversion and valeric acid selectivity greater than 90% were achieved.


Subject(s)
Nitriles/chemistry , Pentanes/chemistry , Pentanoic Acids/chemistry , Water/chemistry , Hot Temperature , Hydrolysis , Kinetics , Pressure
5.
Phys Chem Chem Phys ; 9(27): 3577-89, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17612723

ABSTRACT

The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...