Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
iScience ; 27(7): 110215, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38993675

ABSTRACT

The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119686, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342310

ABSTRACT

BACKGROUND: Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS: We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS: Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS: Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.


Subject(s)
Mouse Embryonic Stem Cells , Transcription Factors , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation/genetics , Chromosomal Proteins, Non-Histone/metabolism , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism
3.
Epigenetics Chromatin ; 16(1): 36, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37759327

ABSTRACT

BACKGROUND: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS: We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS: Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.


Subject(s)
Heterochromatin , Histones , Chromatin , DNA , Histones/metabolism , Nucleophosmin , Histone-Lysine N-Methyltransferase/metabolism , Animals , Mice
4.
Cereb Cortex ; 33(19): 10272-10285, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37566909

ABSTRACT

The cortical plate (CP) is composed of excitatory and inhibitory neurons, the latter of which originate in the ganglionic eminences. From their origin in the ventral telencephalon, maturing postmitotic interneurons migrate during embryonic development over some distance to reach their final destination in the CP. The histone methyltransferase Disruptor of Telomeric Silencing 1-like (DOT1L) is necessary for proper CP development and layer distribution of glutamatergic neurons. However, its specific role on cortical interneuron development has not yet been explored. Here, we demonstrate that DOT1L affects interneuron development in a cell autonomous manner. Deletion of Dot1l in Nkx2.1-expressing interneuron precursor cells results in an overall reduction and altered distribution of GABAergic interneurons in the CP from postnatal day 0 onwards. We observed an altered proportion of GABAergic interneurons in the cortex, with a significant decrease in parvalbumin-expressing interneurons. Moreover, a decreased number of mitotic cells at the embryonic day E14.5 was observed upon Dot1l deletion. Altogether, our results indicate that reduced numbers of cortical interneurons upon DOT1L deletion result from premature cell cycle exit, but effects on postmitotic differentiation, maturation, and migration are likely at play as well.


Subject(s)
Histone-Lysine N-Methyltransferase , Interneurons , Parvalbumins , Telencephalon , Cell Differentiation/physiology , Interneurons/cytology , Interneurons/metabolism , Parvalbumins/genetics , Parvalbumins/metabolism , Telencephalon/cytology , Animals , Mice , Histone-Lysine N-Methyltransferase/genetics
5.
EMBO Rep ; 24(8): e56233, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37382163

ABSTRACT

Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.


Subject(s)
Aspartate-Ammonia Ligase , Neural Stem Cells , Aspartate-Ammonia Ligase/metabolism , Cell Differentiation/genetics , Neural Stem Cells/metabolism , Neurogenesis/genetics
6.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598943

ABSTRACT

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Subject(s)
Forkhead Transcription Factors , Rett Syndrome , Mice , Animals , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Rett Syndrome/genetics , Epigenesis, Genetic , Chromatin/genetics , Chromatin/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
7.
Mol Psychiatry ; 28(1): 497-514, 2023 01.
Article in English | MEDLINE | ID: mdl-35318461

ABSTRACT

The transcription factor FOXG1 serves pleiotropic functions in brain development ranging from the regulation of precursor proliferation to the control of cortical circuit formation. Loss-of-function mutations and duplications of FOXG1 are associated with neurodevelopmental disorders in humans illustrating the importance of FOXG1 dosage for brain development. Aberrant FOXG1 dosage has been found to disrupt the balanced activity of glutamatergic and GABAergic neurons, but the underlying mechanisms are not fully understood. We report that FOXG1 is expressed in the main adult neurogenic niches in mice, i.e. the hippocampal dentate gyrus and the subependymal zone/olfactory bulb system, where neurogenesis of glutamatergic and GABAergic neurons persists into adulthood. These niches displayed differential vulnerability to increased FOXG1 dosage: high FOXG1 levels severely compromised survival and glutamatergic dentate granule neuron fate acquisition in the hippocampal neurogenic niche, but left neurogenesis of GABAergic neurons in the subependymal zone/olfactory bulb system unaffected. Comparative transcriptomic analyses revealed a significantly higher expression of the apoptosis-linked nuclear receptor Nr4a1 in FOXG1-overexpressing hippocampal neural precursors. Strikingly, pharmacological interference with NR4A1 function rescued FOXG1-dependent death of hippocampal progenitors. Our results reveal differential vulnerability of neuronal subtypes to increased FOXG1 dosage and suggest that activity of a FOXG1/NR4A1 axis contributes to such subtype-specific response.


Subject(s)
Nerve Tissue Proteins , Neurodevelopmental Disorders , Animals , Mice , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodevelopmental Disorders/metabolism , Neurogenesis/genetics , Neurons/metabolism , Humans
8.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055139

ABSTRACT

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.


Subject(s)
Forkhead Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Rett Syndrome/genetics , Animals , Disease Models, Animal , Humans , Mutation , Phenotype
9.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206710

ABSTRACT

Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.


Subject(s)
Astrocytes/metabolism , Epigenesis, Genetic , Gliosis/genetics , Animals , Astrocytes/cytology , Astrocytes/pathology , Cell Differentiation , Gliosis/metabolism , Humans
10.
Sci Rep ; 11(1): 9403, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931726

ABSTRACT

Deep generative models, such as variational autoencoders (VAEs) or deep Boltzmann machines (DBMs), can generate an arbitrary number of synthetic observations after being trained on an initial set of samples. This has mainly been investigated for imaging data but could also be useful for single-cell transcriptomics (scRNA-seq). A small pilot study could be used for planning a full-scale experiment by investigating planned analysis strategies on synthetic data with different sample sizes. It is unclear whether synthetic observations generated based on a small scRNA-seq dataset reflect the properties relevant for subsequent data analysis steps. We specifically investigated two deep generative modeling approaches, VAEs and DBMs. First, we considered single-cell variational inference (scVI) in two variants, generating samples from the posterior distribution, the standard approach, or the prior distribution. Second, we propose single-cell deep Boltzmann machines (scDBMs). When considering the similarity of clustering results on synthetic data to ground-truth clustering, we find that the [Formula: see text] variant resulted in high variability, most likely due to amplifying artifacts of small datasets. All approaches showed mixed results for cell types with different abundance by overrepresenting highly abundant cell types and missing less abundant cell types. With increasing pilot dataset sizes, the proportions of the cells in each cluster became more similar to that of ground-truth data. We also showed that all approaches learn the univariate distribution of most genes, but problems occurred with bimodality. Across all analyses, in comparing 10[Formula: see text] Genomics and Smart-seq2 technologies, we could show that for 10[Formula: see text] datasets, which have higher sparsity, it is more challenging to make inference from small to larger datasets. Overall, the results show that generative deep learning approaches might be valuable for supporting the design of scRNA-seq experiments.


Subject(s)
Deep Learning , Sequence Analysis, RNA , Single-Cell Analysis , Pilot Projects
11.
Nat Commun ; 11(1): 5200, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060580

ABSTRACT

During neuronal differentiation, the transcriptional profile and the epigenetic context of neural committed cells is subject to significant rearrangements, but a systematic quantification of global histone modification changes is still missing. Here, we show that H3K79me2 increases and H3K27ac decreases globally during in-vitro neuronal differentiation of murine embryonic stem cells. DOT1L mediates all three degrees of methylation of H3K79 and its enzymatic activity is critical to modulate cellular differentiation and reprogramming. In this context, we find that inhibition of DOT1L in neural progenitor cells biases the transcriptional state towards neuronal differentiation, resulting in transcriptional upregulation of genes marked with H3K27me3 on the promoter region. We further show that DOT1L inhibition affects accessibility of SOX2-bound enhancers and impairs SOX2 binding in neural progenitors. Our work provides evidence that DOT1L activity gates differentiation of progenitors by allowing SOX2-dependent transcription of stemness programs.


Subject(s)
Cell Differentiation/physiology , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Carrier Proteins , Chromatin , Embryonic Stem Cells , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/genetics , Methylation , Mice , Neural Stem Cells/metabolism , Neurons/physiology , Protein Processing, Post-Translational/physiology
12.
Mol Brain ; 13(1): 85, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471461

ABSTRACT

Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation. Conditional inactivation of DOT1L using Wnt1-cre as driver (Dot1l-cKO) showed that DOT1L expression is essential for spinal cord neurogenesis and localization of diverse neuronal subtypes, similar to its function in the development of the cerebral cortex and cerebellum. Transcriptome analysis revealed that DOT1L deficiency favored differentiation over progenitor proliferation. Dot1l-cKO mainly decreased the numbers of dI1 interneurons expressing Lhx2. In contrast, Lhx9 expressing dI1 interneurons did not change in numbers but localized differently upon Dot1l-cKO. Similarly, loss of DOT1L affected localization but not generation of dI2, dI3, dI5, V0 and V1 interneurons. The resulting derailed interneuron patterns might be responsible for increased cell death, occurrence of which was restricted to the late developmental stage E18.5. Together our data indicate that DOT1L is essential for subtype-specific neurogenesis, migration and localization of dorsal and ventral interneurons in the developing spinal cord, in part by regulating transcriptional activation of Lhx2.


Subject(s)
Cell Differentiation , Histone-Lysine N-Methyltransferase/metabolism , Interneurons/cytology , Interneurons/metabolism , Spinal Cord/cytology , Spinal Cord/embryology , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Movement , Cell Proliferation , Chickens , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Homeodomain Proteins/metabolism , Integrases/metabolism , LIM-Homeodomain Proteins/metabolism , Mice, Transgenic , Neurogenesis/genetics , Stem Cells/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Wnt1 Protein/metabolism
13.
Front Cell Neurosci ; 14: 35, 2020.
Article in English | MEDLINE | ID: mdl-32158381

ABSTRACT

Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.

14.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30329130

ABSTRACT

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Subject(s)
Matrix Attachment Region Binding Proteins/genetics , Methyltransferases/genetics , Neurogenesis/genetics , Neurons/metabolism , Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Cell Division/genetics , Cell Proliferation/genetics , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Chromatin/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase , Methylation , Mice , Neurons/pathology , Repressor Proteins/genetics , SOXD Transcription Factors/genetics , T-Box Domain Proteins , Telencephalon/growth & development , Telencephalon/metabolism , Telencephalon/pathology , Tumor Suppressor Proteins/genetics
15.
Mol Neurobiol ; 56(7): 5188-5201, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30539330

ABSTRACT

Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , Forkhead Transcription Factors/metabolism , Hippocampus/metabolism , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Transcription, Genetic/physiology , Age Factors , Animals , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Forkhead Transcription Factors/genetics , Hippocampus/growth & development , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Nerve Tissue Proteins/genetics
16.
Mol Neurobiol ; 56(6): 4273-4287, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30302725

ABSTRACT

The disruptor of telomeric silencing 1-like (DOT1L) mediates methylation of histone H3 at position lysine 79 (H3K79). Conditional knockout of Dot1l in mouse cerebellar granule cells (Dot1l-cKOAtoh1) led to a smaller external granular layer with fewer precursors of granule neurons. Dot1l-cKOAtoh1 mice had impaired proliferation and differentiation of granular progenitors, which resulted in a smaller cerebellum. Mutant mice showed mild ataxia in motor behavior tests. In contrast, Purkinje cell-specific conditional knockout mice showed no obvious phenotype. Genome-wide transcription analysis of Dot1l-cKOAtoh1 cerebella using microarrays revealed changes in genes that function in cell cycle, cell migration, axon guidance, and metabolism. To identify direct DOT1L target genes, we used genome-wide profiling of H3K79me2 and transcriptional analysis. Analysis of differentially methylated regions (DR) and differentially expressed genes (DE) revealed in total 12 putative DOT1L target genes in Dot1l-cKOAtoh1 affecting signaling (Tnfaip8l3, B3galt5), transcription (Otx1), cell migration and axon guidance (Sema4a, Sema5a, Robo1), cholesterol and lipid metabolism (Lss, Cyp51), cell cycle (Cdkn1a), calcium-dependent cell-adhesion or exocytosis (Pcdh17, Cadps2), and unknown function (Fam174b). Dysregulated expression of these target genes might be implicated in the ataxia phenotype observed in Dot1l-cKOAtoh1.


Subject(s)
Cerebellum/metabolism , Histones/metabolism , Lysine/metabolism , Methyltransferases/metabolism , Animals , Axon Guidance/genetics , Cell Cycle , Cell Differentiation , Cell Movement , Cell Proliferation , Cell Survival , Cholesterol/metabolism , Gene Expression Regulation , Histone-Lysine N-Methyltransferase , Methylation , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Stress, Physiological , Transcriptome/genetics
17.
Front Cell Neurosci ; 12: 448, 2018.
Article in English | MEDLINE | ID: mdl-30555301

ABSTRACT

Heterogeneous astrocyte populations are defined by diversity in cellular environment, progenitor identity or function. Yet, little is known about the extent of the heterogeneity and how this diversity is acquired during development. To investigate the impact of TGF (transforming growth factor) ß-signaling on astrocyte development in the telencephalon we deleted the TGFBR2 (transforming growth factor beta receptor 2) in early neural progenitor cells in mice using a FOXG1 (forkhead box G1)-driven CRE-recombinase. We used quantitative proteomics to characterize TGFBR2-deficient cells derived from the mouse telencephalon and identified differential protein expression of the astrocyte proteins GFAP (glial fibrillary acidic protein) and MFGE8 (milk fat globule-EGF factor 8). Biochemical and histological investigations revealed distinct populations of astrocytes in the dorsal and ventral telencephalon marked by GFAP or MFGE8 protein expression. The two subtypes differed in their response to TGFß-signaling. Impaired TGFß-signaling affected numbers of GFAP astrocytes in the ventral telencephalon. In contrast, TGFß reduced MFGE8-expression in astrocytes deriving from both regions. Additionally, lineage tracing revealed that both GFAP and MFGE8 astrocyte subtypes derived partly from FOXG1-expressing neural precursor cells.

18.
Front Neurosci ; 12: 281, 2018.
Article in English | MEDLINE | ID: mdl-29760646

ABSTRACT

DGCR8 and DROSHA are the minimal functional core of the Microprocessor complex essential for biogenesis of canonical microRNAs and for the processing of other RNAs. Conditional deletion of Dgcr8 and Drosha in the murine telencephalon indicated that these proteins exert crucial functions in corticogenesis. The identification of mechanisms of DGCR8- or DROSHA-dependent regulation of gene expression in conditional knockout mice are often complicated by massive apoptosis. Here, to investigate DGCR8 functions on amplification/differentiation of neural progenitors cells (NPCs) in corticogenesis, we overexpress Dgcr8 in the mouse telencephalon, by in utero electroporation (IUEp). We find that DGCR8 promotes the expansion of NPC pools and represses neurogenesis, in absence of apoptosis, thus overcoming the usual limitations of Dgcr8 knockout-based approach. Interestingly, DGCR8 selectively promotes basal progenitor amplification at later developmental stages, entailing intriguing implications for neocortical expansion in evolution. Finally, despite a 3- to 5-fold increase of DGCR8 level in the mouse telencephalon, the composition, target preference and function of the DROSHA-dependent Microprocessor complex remain unaltered. Thus, we propose that DGCR8-dependent modulation of gene expression in corticogenesis is more complex than previously known, and possibly DROSHA-independent.

19.
J Vis Exp ; (131)2018 01 26.
Article in English | MEDLINE | ID: mdl-29443015

ABSTRACT

Brain development is a complex process, which is controlled in a temporo-spatial manner by gradients of morphogens and different transcriptional programs. Additionally, epigenetic chromatin modifications, like histone methylation, have an important role for establishing and maintaining specific cell fates within this process. The vast majority of histone methylation occurs on the flexible histone tail, which is accessible to histone modifiers, erasers, and histone reader proteins. In contrast, H3K79 methylation is located in the globular domain of histone 3 and is implicated in different developmental functions. H3K79 methylation is evolutionarily conserved and can be found in a wide range of species from Homo sapiens to Saccharomyces cerevisiae. The modification occurs in different cell populations within organisms, including neural progenitors. The location of H3K79 methylation in the globular domain of histone 3 makes it difficult to assess. Here, we present methods to isolate and culture cortical progenitor cells (CPCs) from embryonic cortical brain tissue (E11.5-E14.5) or cerebellar granular neuron progenitors (CGNPs) from postnatal tissue (P5-P7), and to efficiently immunoprecipitate H3K79me2 for quantitative PCR (qPCR) and genome-wide sequencing.


Subject(s)
Chromatin Immunoprecipitation/methods , Cytological Techniques/methods , Histones/genetics , Lysine/genetics , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Animals , Mice
20.
Cereb Cortex ; 27(8): 4166-4181, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28444170

ABSTRACT

Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Methylation , Hippocampus/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Stress, Psychological/metabolism , Transforming Growth Factor beta/metabolism , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Chronic Disease , Depressive Disorder/genetics , Depressive Disorder/metabolism , Disease Models, Animal , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Stress, Psychological/genetics , Synaptic Transmission/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...