Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 83: 106405, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32208165

ABSTRACT

There is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions. In Results, we briefly summarize our in vivo and in vitro studies on bone development of chick and mouse [1,2], including (i) expressions of cholinergic components (AChE, BChE, ChAT) in chick embryo, (ii) characterisation of defects during skeletogenesis in prenatal ChE knockout mice, (iii) loss-of-function experiments with beads soaked in cholinergic components and implanted into chicken limb buds, and finally (iv) we use an in vitro mesenchymal 3D-micromass model that mimics cartilage and bone formation, which also had revealed complex crosstalks between cholinergic, radiation and inflammatory mechanisms [3]. In Discussion, we evaluate non-cholinergic actions of cholinesterases during bone formation by considering: (i) how cholinesterases could function in adhesive mechanisms; (ii) whether and how cholinesterases can form bone-regulatory complexes with alkaline phosphatase (ALP) and/or ECM components, which could regulate cell division, migration and adhesion. We conclude that cholinergic actions in bone development are driven mainly by classic cholinergic, but non-neural cycles (e.g., by acetylcholine); in addition, both cholinesterases can exert distinct ACh-independent roles. Considering their tremendous medical impact, these results bring forward novel research directions that deserve to be pursued.


Subject(s)
Acetylcholine/metabolism , Bone Development , Bone and Bones/physiology , Cartilage/physiology , Animals , Cell Differentiation , Chick Embryo , Cholinesterases/metabolism , Humans , Mice , Neuroimmunomodulation , Osteogenesis
2.
Dev Growth Differ ; 61(3): 252-262, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30843193

ABSTRACT

The forebrain develops into the telencephalon, diencephalon, and optic vesicle (OV). The OV further develops into the optic cup, the inner and outer layers of which develop into the neural retina and retinal pigmented epithelium (RPE), respectively. We studied the change in fate of the OV by using embryonic transplantation and explant culture methods. OVs excised from 10-somite stage chick embryos were freed from surrounding tissues (the surface ectoderm and mesenchyme) and were transplanted back to their original position in host embryos. Expression of neural retina-specific genes, such as Rax and Vsx2 (Chx10), was downregulated in the transplants. Instead, expression of the telencephalon-specific gene Emx1 emerged in the proximal region of the transplants, and in the distal part of the transplants close to the epidermis, expression of an RPE-specific gene Mitf was observed. Explant culture studies showed that when OVs were cultured alone, Rax was continuously expressed regardless of surrounding tissues (mesenchyme and epidermis). When OVs without surrounding tissues were cultured in close contact with the anterior forebrain, Rax expression became downregulated in the explants, and Emx1 expression became upregulated. These findings indicate that chick OVs at stage 10 are bi-potential with respect to their developmental fates, either for the neural retina or for the telencephalon, and that the surrounding tissues have a pivotal role in their actual fates. An in vitro tissue culture model suggests that under the influence of the anterior forebrain and/or its surrounding tissues, the OV changes its fate from the retina to the telencephalon.


Subject(s)
Retina/embryology , Animals , Body Patterning/physiology , Cell Differentiation/physiology , Chick Embryo , Gene Expression Regulation, Developmental/physiology , Immunohistochemistry , Retina/cytology , Retina/metabolism , Retinal Pigments/metabolism , Telencephalon/cytology , Telencephalon/embryology , Telencephalon/metabolism
3.
Biol Open ; 6(7): 979-992, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28546339

ABSTRACT

In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.

4.
PLoS One ; 12(1): e0170252, 2017.
Article in English | MEDLINE | ID: mdl-28118357

ABSTRACT

Most components of the cholinergic system are detected in skeletogenic cell types in vitro, yet the function of this system in skeletogenesis remains unclear. Here, we analyzed endochondral ossification in mutant murine fetuses, in which genes of the rate-limiting cholinergic enzymes acetyl- (AChE), or butyrylcholinesterase (BChE), or both were deleted (called here A-B+, A+B-, A-B-, respectively). In all mutant embryos bone growth and cartilage remodeling into mineralizing bone were accelerated, as revealed by Alcian blue (A-blu) and Alizarin red (A-red) staining. In A+B- and A-B- onset of mineralization was observed before E13.5, about 2 days earlier than in wild type and A-B+ mice. In all mutants between E18.5 to birth A-blu staining disappeared from epiphyses prematurely. Instead, A-blu+ cells were dislocated into diaphyses, most pronounced so in A-B- mutants, indicating additive effects of both missing ChEs in A-B- mutant mice. The remodeling effects were supported by in situ hybridization (ISH) experiments performed on cryosections from A-B- mice, in which Ihh, Runx2, MMP-13, ALP, Col-II and Col-X were considerably decreased, or had disappeared between E18.5 and P0. With a second approach, we applied an improved in vitro micromass model from chicken limb buds that allowed histological distinction between areas of cartilage, apoptosis and mineralization. When treated with the AChE inhibitor BW284c51, or with nicotine, there was decrease in cartilage and accelerated mineralization, suggesting that these effects were mediated through nicotinic receptors (α7-nAChR). We conclude that due to absence of either one or both cholinesterases in KO mice, or inhibition of AChE in chicken micromass cultures, there is increase in cholinergic signalling, which leads to increased chondroblast production and premature mineralization, at the expense of incomplete chondrogenic differentiation. This emphasizes the importance of cholinergic signalling in cartilage and bone formation.


Subject(s)
Acetylcholinesterase/deficiency , Apnea/physiopathology , Bone and Bones/embryology , Butyrylcholinesterase/deficiency , Cartilage/embryology , Mesoderm/physiology , Metabolism, Inborn Errors/physiopathology , Osteogenesis/physiology , Acetylcholinesterase/physiology , Animals , Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology , Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/toxicity , Bone and Bones/enzymology , Bone and Bones/pathology , Butyrylcholinesterase/physiology , Cartilage/enzymology , Cartilage/pathology , Chick Embryo , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/toxicity , Chondrogenesis/drug effects , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/physiology , Mice , Mice, Knockout , Nicotine/pharmacology , Nicotine/toxicity , Organ Culture Techniques , alpha7 Nicotinic Acetylcholine Receptor/drug effects , alpha7 Nicotinic Acetylcholine Receptor/physiology
5.
PLoS One ; 11(8): e0161675, 2016.
Article in English | MEDLINE | ID: mdl-27574787

ABSTRACT

Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.


Subject(s)
Acetylcholinesterase/genetics , Choline O-Acetyltransferase/genetics , Extremities/growth & development , Acetylcholinesterase/metabolism , Animals , Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology , Chick Embryo , Choline O-Acetyltransferase/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , In Situ Hybridization, Fluorescence
6.
Development ; 140(24): 4959-69, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24227655

ABSTRACT

The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFß family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick. We now show that the BMP- and Wnt-expressing surface ectoderm is required for RPE specification. We reveal that Wnt signalling from the overlying surface ectoderm is involved in restricting BMP-mediated RPE specification to the dorsal optic vesicle. Wnt2b is expressed in the dorsal surface ectoderm and subsequently in dorsal optic vesicle cells. Activation of Wnt signalling by implanting Wnt3a-soaked beads or inhibiting GSK3ß at optic vesicle stages inhibits NR development and converts the entire optic vesicle into RPE. Surface ectoderm removal at early optic vesicle stages or inhibition of Wnt, but not Wnt/ß-catenin, signalling prevents pigmentation and downregulates the RPE regulatory gene Mitf. Activation of BMP or Wnt signalling can replace the surface ectoderm to rescue MITF expression and optic cup formation. We provide evidence that BMPs and Wnts cooperate via a GSK3ß-dependent but ß-catenin-independent pathway at the level of pSmad to ensure RPE specification in dorsal optic vesicle cells. We propose a new dorsoventral model of optic vesicle patterning, whereby initially surface ectoderm-derived Wnt signalling directs dorsal optic vesicle cells to develop into RPE through a stabilising effect of BMP signalling.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Ectoderm/cytology , Retinal Pigment Epithelium/embryology , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Body Patterning , Cell Differentiation , Chick Embryo , Eye/embryology , Gene Expression Regulation, Developmental , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Microphthalmia-Associated Transcription Factor/biosynthesis , Retinal Pigment Epithelium/metabolism , Smad Proteins/metabolism , beta Catenin/antagonists & inhibitors , beta Catenin/metabolism
7.
Chem Biol Interact ; 203(1): 269-76, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23047026

ABSTRACT

Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule.


Subject(s)
Acetylcholinesterase/physiology , Cell Differentiation/physiology , Cell Proliferation , Acetylcholine/physiology , Acetylcholinesterase/deficiency , Acetylcholinesterase/genetics , Animals , Chick Embryo , Choline O-Acetyltransferase/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Humans , Mice , Mice, Knockout , Neurons/cytology , Neurons/enzymology , Rats , Retina/cytology , Retina/enzymology
8.
Protein Pept Lett ; 19(2): 155-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21933123

ABSTRACT

Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. As revealed by sensitive histochemical procedures, AChE is expressed specifically in many tissues during development and in many mature organisms, as well as in healthy and diseased states. Therefore it is not surprising that there has been a long-standing search for additional, "non-classical" functions of cholinesterases (ChEs). In principle, AChE could either act nonenzymatically, e.g. exerting cell adhesive roles, or, alternatively, it could work within the frame of classic cholinergic systems, but in non-neural tissues. AChE might be considered a highly co-opting protein, since possibly it combines such various functions within one molecule. By presenting four different developmental cases, we here review i) the expression of ChEs in the neural tube and their close relation to cell proliferation and differentiation, ii) that AChE expression reflects a polycentric brain development, iii) the retina as a model for AChE functioning in neural network formation, and iv) nonneural ChEs in limb development and mature bones. Also, possible roles of AChE in neuritic growth and of cholinergic regulations in stem cells are briefly outlined.


Subject(s)
Cholinesterases/physiology , Extremities/embryology , Neurogenesis/genetics , Stem Cells/physiology , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Acetylcholinesterase/physiology , Animals , Bone Development/genetics , Bone Development/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation , Cholinesterases/chemistry , Cholinesterases/genetics , Cholinesterases/metabolism , Extremities/growth & development , Humans , Models, Biological , Neural Tube/embryology , Neural Tube/growth & development , Neural Tube/metabolism , Neurogenesis/physiology , Organogenesis/genetics , Stem Cells/metabolism
9.
Development ; 134(19): 3483-93, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17728349

ABSTRACT

In vertebrates, the neuroepithelium of the optic vesicle is initially multipotential, co-expressing a number of transcription factors that are involved in retinal pigment epithelium (RPE) and neural retina (NR) development. Subsequently, extrinsic signals emanating from the surrounding tissues induce the separation of the optic vesicle into three domains: the optic stalk/nerve, the NR and the RPE. Here, we show that bone morphogenetic proteins (BMPs) are sufficient and essential for RPE development in vivo. Bmp4 and Bmp7 are expressed in the surface ectoderm overlying the optic vesicle, the surrounding mesenchyme and/or presumptive RPE during the initial stages of eye development. During the initial stages of chick eye development the microphthalmia-associated transcription factor (Mitf), important for RPE development, is expressed in the optic primordium that is covered by the BMP-expressing surface ectoderm. Following BMP application, the optic neuroepithelium, including the presumptive optic stalk/nerve and NR domain, develop into RPE as assessed by the expression of Otx2, Mitf, Wnt2b and the pigmented cell marker MMP115. By contrast, interfering with BMP signalling prevents RPE development in the outer layer of the optic cup and induces NR-specific gene expression (e.g. Chx10). Our results show that BMPs are sufficient and essential for RPE development during optic vesicle stages. We propose a model in which the BMP-expressing surface ectoderm initiates RPE specification by inducing Mitf expression in the underlying neuroepithelium of the optic vesicle.


Subject(s)
Bone Morphogenetic Proteins/physiology , Pigment Epithelium of Eye/embryology , Animals , Animals, Genetically Modified , Bone Morphogenetic Proteins/genetics , Chick Embryo , Gene Expression Regulation, Developmental , Models, Biological , Pigment Epithelium of Eye/innervation , Pigment Epithelium of Eye/metabolism , Retina/embryology , Retina/metabolism , Signal Transduction
10.
Development ; 129(4): 983-91, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11861481

ABSTRACT

The role of BMPs in the development of the major noradrenergic centre of the brain, the locus coeruleus (LC), was investigated. LC generation is reflected by initial expression of the transcription factors Phox2a and Phox2b in dorsal rhombomere1 (r1), followed by expression of dopamine-beta-hydroxylase and tyrosine hydroxylase. Bmp5 is expressed in the dorsal neuroepithelium in proximity to Phox2-expressing cells. BMP inhibition in stage 10 chick embryos resulted in the lack of LC neurones or in their generation at the dorsal midline, and loss of roof plate and rhombic lip, but it did not affect neural crest development. These results reveal late essential BMP functions in the specification of dorsal neuronal phenotypes in r1, including LC neurones, and in the development of dorsal midline structures.


Subject(s)
Bone Morphogenetic Proteins/physiology , Locus Coeruleus/embryology , Neurons/cytology , Transforming Growth Factor beta , Animals , Biomarkers , Body Patterning , Bone Morphogenetic Protein 5 , Bone Morphogenetic Protein 7 , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/genetics , CHO Cells , Carrier Proteins , Cell Differentiation , Chick Embryo , Cricetinae , Homeodomain Proteins/genetics , Locus Coeruleus/cytology , Nerve Tissue Proteins/genetics , Neural Crest/drug effects , Proteins/pharmacology , Sepharose , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...