Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Psychol Med ; : 1-11, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801091

ABSTRACT

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

2.
Sci Rep ; 14(1): 8182, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589553

ABSTRACT

Psychological flexibility plays a crucial role in how young adults adapt to their evolving cognitive and emotional landscapes. Our study investigated a core aspect of psychological flexibility in young adults: adaptive variability and maladaptive rigidity in the capacity for behavior change. We examined the interplay of these elements with cognitive-affective processes within a dynamic network, uncovering their manifestation in everyday life. Through an Ecological Momentary Assessment design, we collected intensive longitudinal data over 3 weeks from 114 young adults ages 19 to 32. Using a dynamic network approach, we assessed the temporal dynamics and individual variability in flexibility in relation to cognitive-affective processes in this sample. Rigidity exhibited the strongest directed association with other variables in the temporal network as well as highest strength centrality, demonstrating particularly strong associations to other variables in the contemporaneous network. In conclusion, the results of this study suggest that rigidity in young adults is associated with negative affect and cognitions at the same time point and the immediate future.


Subject(s)
Cognition , Emotions , Humans , Young Adult , Ecological Momentary Assessment , Forecasting
3.
Psychol Med ; 54(2): 278-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37212052

ABSTRACT

BACKGROUND: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. METHODS: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). RESULTS: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. CONCLUSIONS: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Machine Learning , Recognition, Psychology , Support Vector Machine
4.
Cortex ; 168: 203-225, 2023 11.
Article in English | MEDLINE | ID: mdl-37832490

ABSTRACT

The learning of new facial identities and the recognition of familiar faces are crucial processes for social interactions. Recently, a combined computational modeling and functional magnetic resonance imaging (fMRI) study used predictive coding as a biologically plausible framework to model face identity learning and to relate specific model parameters with brain activity (Apps and Tsakiris, Nat Commun 4, 2698, 2013). On the one hand, it was shown that behavioral responses on a two-option face recognition task could be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. On the other hand, brain activity in specific brain regions was associated with these parameters. More specifically, brain activity in the superior temporal sulcus (STS) varied with contextual familiarity, whereas activity in the fusiform face area (FFA) covaried with the prediction error parameter that updated facial familiarity. Literature combining fMRI assessments and computational modeling in humans still needs to be expanded. Furthermore, prior results are largely not replicated. The present study was, therefore, specifically set up to replicate these previous findings. Our results support the original findings in two critical aspects. First, on a group level, the behavioral responses were modeled best by the same computational model reported by the original authors. Second, we showed that estimates of these model parameters covary with brain activity in specific, face-sensitive brain regions. Our results thus provide further evidence that the functional properties of the face perception network conform to central principles of predictive coding. However, our study yielded diverging findings on specific computational model parameters reflected in brain activity. On the one hand, we did not find any evidence of a computational involvement of the STS. On the other hand, our results showed that activity in the right FFA was associated with multiple computational model parameters. Our data do not provide evidence for functional segregation between particular face-sensitive brain regions, as previously proposed.


Subject(s)
Facial Recognition , Humans , Facial Recognition/physiology , Pattern Recognition, Visual/physiology , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging , Computer Simulation , Photic Stimulation/methods
5.
Trials ; 24(1): 514, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568215

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a highly prevalent (8-15%), severely disabling disorder and is associated with enormous socioeconomic impact. Antidepressant medication for the treatment of MDD has proven effective in RCTs; however, placebo response is also substantial. Given the potential benefits of modulating the placebo response in patient care and pharmacological research, understanding the mechanisms underlying placebo response is of high clinical relevance. The placebo response is mediated by treatment expectation, i.e. an individual's belief about whether and how much they will improve as a consequence of their treatment. The mechanisms and moderators of treatment expectation effects in MDD are poorly understood. Initial brain imaging studies on placebo responses in MDD point towards the relevance of the lateral prefrontal cortex and the rostral anterior cingulate cortex (rACC). In this project, we will investigate the neural mechanisms underlying the antidepressant effects of treatment expectation associated with the fast-acting antidepressant esketamine in patients with MDD. Esketamine is an NMDA receptor antagonist inducing antidepressant effects within hours. METHODS: We will employ a fully balanced placebo design with the factors "treatment" (i.v. esketamine / placebo) and verbally induced "expectation" (high / low) combined with fMRI (resting state, emotion and reward processing paradigms) to investigate the psychological and neural mechanisms underlying the antidepressant effects of expectation, and how these interact with the pharmacological effects of esketamine. DISCUSSION: The insights gained by this project promise fundamental implications for clinical treatment and future drug trials. Unraveling the mechanisms underlying expectation effects on antidepressant treatment may inform (1) strategies to modulate these effects and thus improve assay sensitivity in RCTs and (2) novel treatment regiments aiming to maximize the synergistic effects of expectation and pharmacological treatment in the clinical care of patients with MDD. TRIAL REGISTRATION: This trial has been prospectively registered with the EU Clinical Trials Register: EudraCT-No.: 2020-000784-23 (November 17, 2020).


Subject(s)
Antidepressive Agents , Depressive Disorder, Major , Ketamine , Humans , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/psychology , Magnetic Resonance Imaging , Treatment Outcome , Ketamine/therapeutic use
6.
Brain Sci ; 13(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37371350

ABSTRACT

The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2-74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0-71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.

7.
Article in English | MEDLINE | ID: mdl-36898634

ABSTRACT

BACKGROUND: In bipolar disorder (BD), the alternation of extreme mood states indicates deficits in emotion processing, accompanied by aberrant neural function of the emotion network. The present study investigated the effects of an emotion-centered psychotherapeutic intervention on amygdala responsivity and connectivity during emotional face processing in BD. METHODS: In a randomized controlled trial within the multicentric BipoLife project, euthymic patients with BD received one of two interventions over 6 months: an unstructured, emotion-focused intervention (FEST), where patients were guided to adequately perceive and label their emotions (n = 28), or a specific, structured, cognitive behavioral intervention (SEKT) (n = 31). Before and after interventions, functional magnetic resonance imaging was conducted while patients completed an emotional face-matching paradigm (final functional magnetic resonance imaging sample of patients completing both measurements: SEKT, n = 17; FEST, n = 17). Healthy control subjects (n = 32) were scanned twice after the same interval without receiving any intervention. Given the focus of FEST on emotion processing, we expected FEST to strengthen amygdala activation and connectivity. RESULTS: Clinically, both interventions stabilized patients' euthymic states in terms of affective symptoms. At the neural level, FEST versus SEKT increased amygdala activation and amygdala-insula connectivity at postintervention relative to preintervention time point. In FEST, the increase in amygdala activation was associated with fewer depressive symptoms (r = 0.72) 6 months after intervention. CONCLUSIONS: Enhanced activation and functional connectivity of the amygdala after FEST versus SEKT may represent a neural marker of improved emotion processing, supporting the FEST intervention as an effective tool in relapse prevention in patients with BD.


Subject(s)
Bipolar Disorder , Humans , Brain Mapping , Neural Pathways , Amygdala , Emotions/physiology , Psychotherapy
8.
Article in English | MEDLINE | ID: mdl-36087699

ABSTRACT

BACKGROUND: In bipolar disorder, impaired affective theory of mind (aToM) performance and aberrant neural activation in the ToM brain network partly explain social functioning impairments. However, it is not yet known whether psychotherapy of bipolar disorder influences neuroimaging markers of aToM. METHODS: In this study, conducted within the multicentric randomized controlled trial of the BipoLife consortium, patients with euthymic bipolar disorder underwent 2 group interventions over 6 months (mean = 28.45 weeks): 1) a specific, cognitive behavioral intervention (specific psychotherapeutic intervention [SEKT]) (n = 31) targeting impulse regulation, ToM, and social skills and 2) an emotion-focused intervention (FEST) (n = 28). To compare the effect of SEKT and FEST on neural correlates of aToM, patients performed an aToM task during functional magnetic resonance imaging before and after interventions (final functional magnetic resonance imaging sample of pre- and postcompleters, SEKT: n = 16; FEST: n = 17). Healthy control subjects (n = 32) were scanned twice with the same time interval. Because ToM was trained in SEKT, we expected an increased ToM network activation in SEKT relative to FEST postintervention. RESULTS: Both treatments effectively stabilized patients' euthymic state in terms of affective symptoms, life satisfaction, and global functioning. Confirming our expectations, SEKT patients showed increased neural activation within regions of the ToM network, bilateral temporoparietal junction, posterior cingulate cortex, and precuneus, whereas FEST patients did not. CONCLUSIONS: The stabilizing effect of SEKT on clinical outcomes went along with increased neural activation of the ToM network, while FEST possibly exerted its positive effect by other, yet unexplored routes.


Subject(s)
Bipolar Disorder , Theory of Mind , Humans , Theory of Mind/physiology , Brain , Cyclothymic Disorder , Psychotherapy
9.
Neuroimage ; 263: 119587, 2022 11.
Article in English | MEDLINE | ID: mdl-36031183

ABSTRACT

The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area - OFA, fusiform face area - FFA, posterior superior temporal sulcus - pSTS) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".


Subject(s)
Facial Recognition , Male , Humans , Facial Recognition/physiology , Brain Mapping , Magnetic Resonance Imaging/methods , Brain/physiology , Functional Laterality/physiology
10.
Int J Bipolar Disord ; 9(1): 37, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34786613

ABSTRACT

BACKGROUND: Bipolar disorder is one of the most severe mental disorders. Its chronic course is associated with high rates of morbidity and mortality, a high risk of suicide and poor social and occupational outcomes. Despite the great advances over the last decades in understanding mental disorders, the mechanisms underlying bipolar disorder at the neural network level still remain elusive. This has severe consequences for clinical practice, for instance by inadequate diagnoses or delayed treatments. The German research consortium BipoLife aims to shed light on the mechanisms underlying bipolar disorders. It was established in 2015 and incorporates ten university hospitals across Germany. Its research projects focus in particular on individuals at high risk of bipolar disorder, young patients in the early stages of the disease and patients with an unstable highly relapsing course and/or with acute suicidal ideation. METHODS: Functional and structural magnetic resonance imaging (MRI) data was acquired across nine sites within three different studies. Obtaining neuroimaging data in a multicenter setting requires among others the harmonization of the acquisition protocol, the standardization of paradigms and the implementation of regular quality control procedures. The present article outlines the MRI imaging protocols, the acquisition parameters, the imaging paradigms, the neuroimaging quality assessment procedures and the number of recruited subjects. DISCUSSION: The careful implementation of a MRI study protocol as well as the adherence to well-defined quality assessment procedures is one key benchmark in the evaluation of the overall quality of large-scale multicenter imaging studies. This article contributes to the BipoLife project by outlining the rationale and the design of the MRI study protocol. It helps to set the necessary standards for follow-up analyses and provides the technical details for an in-depth understanding of follow-up publications.

11.
Transl Psychiatry ; 11(1): 485, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545071

ABSTRACT

In psychiatry, there has been a growing focus on identifying at-risk populations. For schizophrenia, these efforts have led to the development of early recognition and intervention measures. Despite a similar disease burden, the populations at risk of bipolar disorder have not been sufficiently characterized. Within the BipoLife consortium, we used magnetic resonance imaging (MRI) data from a multicenter study to assess structural gray matter alterations in N = 263 help-seeking individuals from seven study sites. We defined the risk using the EPIbipolar assessment tool as no-risk, low-risk, and high-risk and used a region-of-interest approach (ROI) based on the results of two large-scale multicenter studies of bipolar disorder by the ENIGMA working group. We detected significant differences in the thickness of the left pars opercularis (Cohen's d = 0.47, p = 0.024) between groups. The cortex was significantly thinner in high-risk individuals compared to those in the no-risk group (p = 0.011). We detected no differences in the hippocampal volume. Exploratory analyses revealed no significant differences in other cortical or subcortical regions. The thinner cortex in help-seeking individuals at risk of bipolar disorder is in line with previous findings in patients with the established disorder and corresponds to the region of the highest effect size in the ENIGMA study of cortical alterations. Structural alterations in prefrontal cortex might be a trait marker of bipolar risk. This is the largest structural MRI study of help-seeking individuals at increased risk of bipolar disorder.


Subject(s)
Bipolar Disorder , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Risk Factors
12.
Neuron ; 109(11): 1769-1775, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33932337

ABSTRACT

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.


Subject(s)
Communication , Internet , Neurosciences/organization & administration , Congresses as Topic , Practice Guidelines as Topic
13.
Front Neurosci ; 13: 688, 2019.
Article in English | MEDLINE | ID: mdl-31333406

ABSTRACT

Image characteristics of magnetic resonance imaging (MRI) data (e.g., signal-to-noise ratio, SNR) may change over the course of a study. To monitor these changes a quality assurance (QA) protocol is necessary. QA can be realized both by performing regular phantom measurements and by controlling the human MRI datasets (e.g., noise detection in structural or movement parameters in functional datasets). Several QA tools for the assessment of MRI data quality have been developed. Many of them are freely available. This allows in principle the flexible set-up of a QA protocol specifically adapted to the aims of one's own study. However, setup and maintenance of these tools takes substantial time, in particular since the installation and operation often require a fair amount of technical knowledge. In this article we present a light-weighted virtual machine, named LAB-QA2GO, which provides scripts for fully automated QA analyses of phantom and human datasets. This virtual machine is ready for analysis by starting it the first time. With minimal configuration in the guided web-interface the first analysis can start within 10 min, while adapting to local phantoms and needs is easily possible. The usability and scope of LAB-QA2GO is illustrated using a data set from the QA protocol of our lab. With LAB-QA2GO we hope to provide an easy-to-use toolbox that is able to calculate QA statistics without high effort.

14.
Neuroimage ; 172: 450-460, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29410079

ABSTRACT

Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.


Subject(s)
Magnetic Resonance Imaging/standards , Multicenter Studies as Topic/standards , Neuroimaging/standards , Quality Assurance, Health Care/methods , Adult , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Mood Disorders/diagnostic imaging , Multicenter Studies as Topic/instrumentation , Multicenter Studies as Topic/methods , Neuroimaging/instrumentation , Neuroimaging/methods , Quality Assurance, Health Care/standards , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...