Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121405

ABSTRACT

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibody Specificity , Chromatin/chemistry , Immunoprecipitation/methods , Proteomics/methods , Cloning, Molecular , Computational Biology/methods , Escherichia coli/metabolism , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptide Library , Proteins/chemistry , Proteome , Reproducibility of Results
2.
Clin Proteomics ; 12(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25678897

ABSTRACT

BACKGROUND: The anatomy of PFO suggests that it can allow thrombi and potentially harmful circulatory factors to travel directly from the venous to the arterial circulation - altering circulatory phenotype. Our previous publication using high-resolution LC-MS/MS to profile protein and peptide expression patterns in plasma showed that albumin was relatively increased in donor samples from PFO-related than other types of ischemic strokes. Since albumin binds a host of molecules and acts as a carrier for lipoproteins, small molecules and drugs, we decided to investigate the albumin-bound proteins (in a similar sample cohort) in an effort to unravel biological changes and potentially discover biomarkers related to PFO-related stroke and PFO endovascular closure. METHODS: The method used in this study combined albumin immuno-enrichment with high resolution LC-MS in order to specifically capture and quantify the albumin-bound proteins. Subsequently, we measured cholesterol and HDL in a larger, separate cohort of PFO stroke patients, pre and post closure. RESULTS: The results demonstrated that a number of proteins were specifically associated with albumin in samples with and without endovascular closure of the PFO, and that the protein profiles were very different. Eight proteins, typically associated with HDL were common to both sample sets and quantitatively differently abundant. Pathway analysis of the MS results suggested that enhanced cholesterol efflux and reduced lipid oxidation were associated with PFO closure. Measurement of total cholesterol and HDL in a larger cohort of PFO closure samples using a colorimetric assay was consistent with the proteomic predictions. CONCLUSIONS: The collective data presented in this study demonstrate that analysis of albumin-bound proteins could provide a valuable tool for biomarker discovery on the effects of PFO endovascular closure. In addition, the results suggest that PFO endovascular closure can potentially have effects on HDL, cholesterol and albumin-bound ApoA-I abundance, therefore possibly providing benefits in cardioprotective functions.

3.
Proteomics ; 14(12): 1445-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24668948

ABSTRACT

The detection and quantification of insulin and its therapeutic analogs is important for medical, sports doping, and forensic applications. Synthetic variants contain slight sequence variations to affect bioavailability. To reduce sample handling bias, a universal extraction method is required for simultaneous extraction of endogenous and variant insulins with subsequent targeted quantification by LC-MS. A mass spectrometric immunoassay (MSIA), a multiplexed assay for intact insulin and its analogues that couples immunoenrichment with high resolution and accurate mass (HR/AM) spectrometric detection across the clinical range is presented in this report. The assay is sensitive, selective, semi-automated and can potentially be applied to detect new insulin isoforms allowing their further incorporation into second or third generation assays.


Subject(s)
Chromatography, Liquid/methods , High-Throughput Screening Assays , Immunoassay/methods , Insulin/analogs & derivatives , Insulin/blood , Proteomics , Tandem Mass Spectrometry/methods , Humans , Protein Isoforms
4.
Clin Biochem ; 46(6): 399-410, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23313081

ABSTRACT

OBJECTIVES: The aim of this study was to develop high-throughput, quantitative and highly selective mass spectrometric, targeted immunoassays for clinically important proteins in human plasma or serum. DESIGN AND METHODS: The described method coupled mass spectrometric immunoassay (MSIA), a previously developed technique for immunoenrichment on a monolithic microcolumn activated with an anti-protein antibody and fixed in a pipette tip, to selected reaction monitoring (SRM) detection and accurate quantification of targeted peptides, including clinically relevant sequence or truncated variants. RESULTS: In this report, we demonstrate the rapid development of MSIA-SRM assays for sixteen different target proteins spanning seven different clinically important areas (including neurological, Alzheimer's, cardiovascular, endocrine function, cancer and other diseases) and ranging in concentration from pg/mL to mg/mL. The reported MSIA-SRM assays demonstrated high sensitivity (within published clinical ranges), precision, robustness and high-throughput as well as specific detection of clinically relevant isoforms for many of the target proteins. Most of the assays were tested with bona-fide clinical samples. In addition, positive correlations, (R2 0.67-0.87, depending on the target peptide), were demonstrated for MSIA-SRM assay data with clinical analyzer measurements of parathyroid hormone (PTH) and insulin growth factor 1 (IGF1) in clinical sample cohorts. CONCLUSIONS: We have presented a practical and scalable method for rapid development and deployment of MS-based SRM assays for clinically relevant proteins and measured levels of the target analytes in bona fide clinical samples. The method permits the specific quantification of individual protein isoforms and addresses the difficult problem of protein heterogeneity in clinical proteomics applications.


Subject(s)
Blood Proteins/isolation & purification , High-Throughput Screening Assays , Immunoassay/methods , Mass Spectrometry/methods , Alzheimer Disease/blood , Cardiovascular Diseases/blood , Growth Disorders/blood , Humans , Neoplasms/blood , Renal Insufficiency/blood
5.
Methods Mol Biol ; 728: 87-107, 2011.
Article in English | MEDLINE | ID: mdl-21468942

ABSTRACT

Proteomic-based biomarker discovery approaches broadly attempt to identify proteins whose basal abundance, or change in abundance in response to a perturbation (e.g., a therapeutic intervention) is able to discriminate between populations of patients. Up until recently, the majority of approaches for discovering circulating biomarkers have focused on directly profiling serum or plasma to identify such proteins. However, the complexity and dynamic range of protein abundance in serum and plasma create a significant challenge for proteomics methods. To overcome these barriers, diverse approaches to simplify or to fractionate serum and plasma have been developed. For some diseases, such as those related to specific organs, there may be useful marker proteins that originate in the organ. Here, we describe an approach for marker discovery that focuses on the profiling of either primary tissue or cell culture models thereof.


Subject(s)
Biomarkers/blood , Models, Biological , Proteomics/methods , Cell Fractionation , Cell Line, Tumor , Chemical Fractionation , Humans , Isotope Labeling , Mass Spectrometry , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...