Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; 54(4): e2250318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072999

ABSTRACT

Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.


Subject(s)
Biosensing Techniques , Immunity, Innate , Humans , Immunoassay , Killer Cells, Natural , Lectins, C-Type/metabolism
2.
Cell Rep ; 42(8): 112888, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37527039

ABSTRACT

Evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to the emergence of sublineages with different patterns of neutralizing antibody evasion. We report that Omicron BA.4/BA.5 breakthrough infection of individuals immunized with SARS-CoV-2 wild-type-strain-based mRNA vaccines results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization but does not efficiently boost BA.2.75.2, XBB, or XBB.1.5 neutralization. In silico analyses showed that the Omicron spike glycoprotein lost most neutralizing B cell epitopes, especially in sublineages BA.2.75.2, XBB, and XBB.1.5. In contrast, T cell epitopes are conserved across variants including XBB.1.5. T cell responses of mRNA-vaccinated, SARS-CoV-2-naive individuals against the wild-type strain, Omicron BA.1, and BA.4/BA.5 were comparable, suggesting that T cell immunity against recent sublineages including XBB.1.5 may remain largely unaffected. While some Omicron sublineages effectively evade B cell immunity, spike-protein-specific T cell immunity, due to the nature of polymorphic cell-mediated immune responses, may continue to contribute to prevention/limitation of severe COVID-19 manifestation.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
3.
Oncoimmunology ; 11(1): 2131096, 2022.
Article in English | MEDLINE | ID: mdl-36211805

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide due to high recurrence rates after curative treatment and being frequently diagnosed at an advanced stage. Immune-checkpoint inhibition (ICPI) has yielded impressive clinical successes in a variety of solid cancers, however results in treatment of HCC have been modest. Vaccination could be a promising treatment to synergize with ICPI and enhance response rates. Cancer testis antigens (CTAs) were recently discovered to be widely expressed in HCC and expression in macroscopically tumor-free tissues correlated with recurrence, implying the presence of micro-satellites. To determine whether CTAs are immunogenic in HCC patients, we analyzed systemic T-cell and humoral responses against seven CTAs in 38 HCC patients using a multitude of techniques; flowcytometry, ELISA and whole antigen and peptide stimulation assays. CTA-specific T-cells were detected in all (25/25) analyzed patients, of which most had a memory phenotype but did not exhibit unequivocal signs of chronic stimulation or recent antigen encounter. Proliferative CD4+ and CD8+ T-cell responses against these CTAs were found in 14/16 analyzed HCC patients. CTA-peptide stimulation-induced granzyme B, IL2, and TNFa in 8/8 analyzed patients, including two MAGEA1 peptides included based on in silico prediction. Finally, IgG responses were observed in 13/32 patients, albeit with low titers. The presence of CD4+ and CD8+ T-cells and IgG responses shows the immunogenicity of these CTAs in HCC-patients. We hypothesize that vaccines based on these tumor-specific antigens may boost preexisting CTA-specific immunity and could enhance therapeutic efficacy of ICPI in advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Granzymes/metabolism , Humans , Immune Checkpoint Inhibitors , Immunoglobulin G/metabolism , Interleukin-2/metabolism , Liver Neoplasms/therapy , Male , Peptides/metabolism , Testis/metabolism , Testis/pathology
4.
Sci Immunol ; 7(75): eabq2427, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35653438

ABSTRACT

Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.


Subject(s)
COVID-19 , Viral Envelope Proteins , BNT162 Vaccine , Epitopes , Humans , Membrane Glycoproteins , Memory B Cells , Neutralization Tests , SARS-CoV-2
5.
Nat Biotechnol ; 40(8): 1276-1284, 2022 08.
Article in English | MEDLINE | ID: mdl-35379963

ABSTRACT

Cancer-associated gene fusions are a potential source for highly immunogenic neoantigens, but the lack of computational tools for accurate, sensitive identification of personal gene fusions has limited their targeting in personalized cancer immunotherapy. Here we present EasyFuse, a machine learning computational pipeline for detecting cancer-specific gene fusions in transcriptome data obtained from human cancer samples. EasyFuse predicts personal gene fusions with high precision and sensitivity, outperforming previously described tools. By testing immunogenicity with autologous blood lymphocytes from patients with cancer, we detected pre-established CD4+ and CD8+ T cell responses for 10 of 21 (48%) and for 1 of 30 (3%) identified gene fusions, respectively. The high frequency of T cell responses detected in patients with cancer supports the relevance of individual gene fusions as neoantigens that might be targeted in personalized immunotherapies, especially for tumors with low mutation burden.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Gene Fusion , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy
6.
Nature ; 595(7868): 572-577, 2021 07.
Article in English | MEDLINE | ID: mdl-34044428

ABSTRACT

BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , BNT162 Vaccine , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Young Adult
8.
Nature ; 586(7830): 594-599, 2020 10.
Article in English | MEDLINE | ID: mdl-32998157

ABSTRACT

An effective vaccine is needed to halt the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase I/II coronavirus disease 2019 (COVID-19) vaccine trial with BNT162b1, a lipid nanoparticle-formulated nucleoside-modified mRNA that encodes the receptor binding domain (RBD) of the SARS-CoV-2 spike protein1. Here we present antibody and T cell responses after vaccination with BNT162b1 from a second, non-randomized open-label phase I/II trial in healthy adults, 18-55 years of age. Two doses of 1-50 µg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those seen in serum from a cohort of individuals who had recovered from COVID-19. Geometric mean titres of SARS-CoV-2 serum-neutralizing antibodies on day 43 were 0.7-fold (1-µg dose) to 3.5-fold (50-µg dose) those of the recovered individuals. Immune sera broadly neutralized pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had T helper type 1 (TH1)-skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon-γ was produced by a large fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest that it has the potential to protect against COVID-19 through multiple beneficial mechanisms.


Subject(s)
Antibodies, Viral/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Th1 Cells/immunology , Viral Vaccines/immunology , Adult , Antibodies, Neutralizing/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Cytokines/immunology , Female , Germany , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics , Th1 Cells/cytology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
9.
Nature ; 585(7823): 107-112, 2020 09.
Article in English | MEDLINE | ID: mdl-32728218

ABSTRACT

Treating patients who have cancer with vaccines that stimulate a targeted immune response is conceptually appealing, but cancer vaccine trials have not been successful in late-stage patients with treatment-refractory tumours1,2. We are testing melanoma FixVac (BNT111)-an intravenously administered liposomal RNA (RNA-LPX) vaccine, which targets four non-mutated, tumour-associated antigens that are prevalent in melanoma-in an ongoing, first-in-human, dose-escalation phase I trial in patients with advanced melanoma (Lipo-MERIT trial, ClinicalTrials.gov identifier NCT02410733). We report here data from an exploratory interim analysis that show that melanoma FixVac, alone or in combination with blockade of the checkpoint inhibitor PD1, mediates durable objective responses in checkpoint-inhibitor (CPI)-experienced patients with unresectable melanoma. Clinical responses are accompanied by the induction of strong CD4+ and CD8+ T cell immunity against the vaccine antigens. The antigen-specific cytotoxic T-cell responses in some responders reach magnitudes typically reported for adoptive T-cell therapy, and are durable. Our findings indicate that RNA-LPX vaccination is a potent immunotherapy in patients with CPI-experienced melanoma, and suggest the general utility of non-mutant shared tumour antigens as targets for cancer vaccination.


Subject(s)
Antineoplastic Agents/therapeutic use , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Neoplasm/genetics , T-Lymphocytes/immunology , Antigens, Neoplasm/immunology , Antineoplastic Agents/pharmacology , Cancer Vaccines/administration & dosage , Cancer Vaccines/adverse effects , Combined Modality Therapy , Humans , Melanoma/drug therapy , Melanoma/pathology , Neoplasm Staging , T-Lymphocytes/cytology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Vaccination
10.
Nature ; 547(7662): 222-226, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28678784

ABSTRACT

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of ß2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Subject(s)
Cancer Vaccines/genetics , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Mutation/genetics , Precision Medicine/methods , RNA/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/immunology , CD8 Antigens/immunology , Cancer Vaccines/therapeutic use , Epitopes/genetics , Epitopes/immunology , Humans , Immunotherapy/methods , Melanoma/genetics , Neoplasm Metastasis , Neoplasm Recurrence, Local/prevention & control , Nivolumab , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Vaccination , beta 2-Microglobulin/deficiency
11.
Immunology ; 145(1): 114-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25510854

ABSTRACT

Keratinocyte-associated C-type lectin (KACL) is a peculiar C-type lectin-like receptor (CTLR) due to its selective expression by human keratinocytes and cognate interaction with the genetically coupled CTLR NKp65. KACL and NKp65 are members of the CLEC2 and NKRP1 subfamilies of natural killer gene complex (NKC)-encoded CTLR, respectively. Most NKRP1 molecules are expressed on NK cells and T cells and act as receptors of CLEC2 glycoproteins with their genes being intermingled in a certain sub-region of the mammalian NKC. The reasons for the tight genetic linkage of these dedicated receptor/ligand pairs are unknown, as is the physiological expression of NKp65. Recently, we reported that the CTLR NKp65 and KACL interact with high affinity, resulting in activation of NKp65-expressing NK-92MI cells. Here, we address the molecular basis of this high-affinity interaction by analysing KACL mutants with KACL-specific monoclonal antibodies (mAb), soluble NKp65 (sNKp65) and NK-92MI-NKp65 cells. We find that none of the three N-linked carbohydrates of KACL glycoproteins significantly contributes to KACL surface expression and NKp65 interaction. However, KACL mutants with non-conservative amino acid substitutions of arginine 158 or isoleucine 161 abrogated binding of both KACL-specific mAb OMA1 and sNKp65, well in line with the blockade of NKp65-KACL interaction by OMA1. Accordingly, functional recognition of these KACL mutants by NK-92M-NKp65 cells was completely abolished. Arginine 158 and isoleucine 161 located at the membrane-distal surface of KACL were defined as residues, decisively determining functional KACL-NKp65 interaction that is independent of KACL glycosylation.


Subject(s)
Keratinocytes/immunology , Lectins, C-Type/immunology , Mutation, Missense , Receptors, NK Cell Lectin-Like/immunology , Amino Acid Substitution , Antibodies, Monoclonal, Murine-Derived/chemistry , Cells, Cultured , Glycosylation , Humans , Keratinocytes/cytology , Lectins, C-Type/genetics , Protein Binding/genetics , Protein Binding/immunology , Receptors, NK Cell Lectin-Like/genetics
12.
Nature ; 512(7514): 324-7, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25043048

ABSTRACT

Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioma/immunology , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutant Proteins/immunology , Animals , Antibody Specificity , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Female , Glioma/enzymology , Glioma/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Humoral , Immunotherapy/methods , Male , Mice , Mutant Proteins/genetics , Mutation , T-Lymphocytes, Helper-Inducer/immunology , Xenograft Model Antitumor Assays
13.
J Innate Immun ; 3(3): 227-35, 2011.
Article in English | MEDLINE | ID: mdl-21422751

ABSTRACT

The natural killer gene complex (NKC) encodes several dozens of C-type lectin-like receptors that, in various ways, tune the reactivity of NK cells and other cytotoxic lymphocytes depending on the cellular environment. Among these are C-type lectin-like receptors such as NKG2D, CD94/NKG2A and the murine Ly49 receptors that bind to cell surface glycoproteins of the major histocompatibility complex (MHC) class I family and thereby facilitate detection of stressed cells or cells exhibiting aberrant MHC class I expression. In contrast, NKRP1 receptors including the prototypic NK1.1 do not engage ligands with an MHC class-I-like fold, but rather interact with the likewise C-type lectin-like CLEC2 glycoproteins. Notably, CLEC2 and NKRP1 molecules not only share the same fold, but are also genetically linked in the NKC. Recent research efforts began to systematically elucidate the expression and function of the numerous NKRP1 and CLEC2 family members in rodents and revealed previously unnoticed corresponding receptor/ligand pairs in humans. Here, we provide a snapshot of the current knowledge on receptors of the NKRP1 family and their genetically linked CLEC2 ligands in mouse and man.


Subject(s)
Killer Cells, Natural/immunology , Lectins, C-Type/immunology , Membrane Glycoproteins/immunology , Receptors, Natural Killer Cell/immunology , Animals , Gene Regulatory Networks/immunology , Genetic Linkage/immunology , Humans , Immunity, Innate , Ligands , Mice , Organ Specificity , Receptor Cross-Talk
14.
Mol Ther ; 18(7): 1330-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20461062

ABSTRACT

T-cell-based adoptive immunotherapy is widely used to treat graft rejection and relapse after stem cell transplantation (SCT). However, this approach is hampered by a high risk of life-threatening graft-versus-host-disease (GvHD). Clinical trials have demonstrated the value of suicide genes to modify T cells for the effective control of GvHD. Herewith, we show that the combination of a codon-optimized B-cell antigen (CD20op) with a selection marker based on a cytoplasmic truncated version of the human stem cell antigen CD34 (tCD34) allows the generation of highly enriched gene-modified T cells. We demonstrate coordinate co-expression of both transgenes and high expression of CD20op resulting in an increased susceptibility to Rituximab (RTX)-induced cell death. In addition, T cells partially retained their alloreactive potential and their CD4/CD8 ratio after transduction and expansion. Long-lasting transgene expression was sustained in vivo after adoptive transfer into Rag-1(-/-) mice. Moreover, gene-modified T cells were quickly and efficiently depleted from peripheral blood (PB) and secondary lymphoid organs of transplanted animals after RTX treatment. These results warrant further steps toward a clinical application of CD20op as a suicide gene for adoptive immunotherapy.


Subject(s)
Antigens, CD20/metabolism , Antigens, CD34/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Murine-Derived , Cell Line , Cells, Cultured , Genetic Vectors/genetics , Graft vs Host Disease/drug therapy , Graft vs Host Disease/therapy , Homeodomain Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Rituximab , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...