Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(21): eadj8769, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787942

ABSTRACT

Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.


Subject(s)
Brain , RNA, Circular , Synaptic Transmission , RNA, Circular/genetics , Animals , Mice , Brain/metabolism , Brain/physiology , Mice, Knockout , Neurons/metabolism , Neurons/physiology
2.
Nat Commun ; 14(1): 7674, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996418

ABSTRACT

Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.


Subject(s)
Neural Stem Cells , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neural Stem Cells/metabolism , Follow-Up Studies , Dopaminergic Neurons/metabolism , Disease Progression
3.
Nat Commun ; 13(1): 4819, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974013

ABSTRACT

Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.


Subject(s)
Hedgehog Proteins , Neural Stem Cells , Parkinson Disease , Animals , Cilia/metabolism , Disease Models, Animal , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mice , Neural Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Signal Transduction
4.
Mol Aspects Med ; 86: 101096, 2022 08.
Article in English | MEDLINE | ID: mdl-35370007

ABSTRACT

Parkinson's disease (PD) is a still incurable neurodegenerative disorder with a highly complex etiology. While about 10% of cases are associated with single-gene mutations, the majority of PD is thought to originate from a combination of factors such as environmental impact, lifestyle and aging. Even though investigations into the genetically caused cases have uncovered major pathomechanisms of the disease there still exists a wide gap concerning the molecular impact of the other risk factors. All of them are known to have a major impact on the oxidative burden of the cell and thus strongly influence the non-enzymatic posttranslational modifications (nePTMs) of proteins. These modifications are by now known to dramatically alter the stability of proteins, their interactomes, and also their functions. However, the knowledge of nePTMs and their possible causative role in the pathoetiology of PD is just starting to emerge again guided by research on PD-associated genes. In this short review, we will thus concentrate on known nePTMs of two PD-associated genes, SCNA and DJ-1, and discuss their role in the pathoetiology of PD. In the future, it will, however, be essential to unravel the complete "environmental proteome" to understand the impact of nePTMs on PD etiology. This might open up new pathways urgently needed to develop new diagnostic and therapeutic tools for this still incurable disease.


Subject(s)
Parkinson Disease , Humans , Mutation , Oxidation-Reduction , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Processing, Post-Translational
5.
EMBO Mol Med ; 14(5): e14797, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35373464

ABSTRACT

Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single-cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6-OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV-dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.


Subject(s)
Parkinson Disease , Animals , Astrocytes , Corpus Striatum , Dopamine , Dopaminergic Neurons , GABAergic Neurons , Mice , Parkinson Disease/genetics , Parkinson Disease/therapy
6.
iScience ; 23(12): 101797, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33299968

ABSTRACT

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.

7.
Sci Transl Med ; 12(560)2020 09 09.
Article in English | MEDLINE | ID: mdl-32908004

ABSTRACT

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Subject(s)
Parkinson Disease , Dopaminergic Neurons , Exons/genetics , Humans , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , RNA Splicing
8.
Neurobiol Dis ; 82: 32-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26049140

ABSTRACT

The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/ß-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.


Subject(s)
Dopaminergic Neurons/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Nerve Degeneration/genetics , Signal Transduction/genetics , Wnt1 Protein/metabolism , Adaptor Proteins, Signal Transducing , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Differentiation/genetics , Dopaminergic Neurons/pathology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Up-Regulation , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/pathology
9.
Nat Neurosci ; 18(2): 239-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25581363

ABSTRACT

Neddylation is a ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. However, its role in neurons, nonreplicating postmitotic cells, remains unexplored. Here we report that Nedd8 conjugation increased during postnatal brain development and is active in mature synapses, where many proteins are neddylated. We show that neddylation controls spine development during neuronal maturation and spine stability in mature neurons. We found that neddylated PSD-95 was present in spines and that neddylation on Lys202 of PSD-95 is required for the proactive role of the scaffolding protein in spine maturation and synaptic transmission. Finally, we developed Nae1(CamKIIα-CreERT2) mice, in which neddylation is conditionally ablated in adult excitatory forebrain neurons. These mice showed synaptic loss, impaired neurotransmission and severe cognitive deficits. In summary, our results establish neddylation as an active post-translational modification in the synapse regulating the maturation, stability and function of dendritic spines.


Subject(s)
Brain/growth & development , Cognition Disorders/metabolism , Dendritic Spines/physiology , Guanylate Kinases/physiology , Membrane Proteins/physiology , Synapses/physiology , Synaptic Transmission/physiology , Ubiquitins/metabolism , Animals , Behavior, Animal/physiology , Brain/metabolism , Disks Large Homolog 4 Protein , Mice , Mice, Inbred C57BL , Mice, Knockout , NEDD8 Protein , Rats , Rats, Sprague-Dawley , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/physiology , Ubiquitins/antagonists & inhibitors
10.
Exp Neurol ; 235(1): 214-27, 2012 May.
Article in English | MEDLINE | ID: mdl-22265660

ABSTRACT

Parkinson's Disease (PD) is the most common neurodegenerative movement disorder. Autosomal-recessive mutations in the mitochondrial protein kinase PINK1 (PTEN-induced kinase 1) account for 1-2% of the hereditary early-onset cases. To study the mechanisms underlying disease development, we generated Pink1-deficient mice. In analogy to other genetic loss-of-function mouse models, Pink1(-/-) mice did not show morphological alterations in the dopaminergic system. As a consequence, no gross motor dysfunctions were observed indicating that these mice do not develop the cardinal symptoms of PD. Nonetheless, symptoms which develop mainly before bradykinesia, rigidity and resting tremor were clearly evident in Pink1-deficient mice. These symptoms were gait alterations and olfactory dysfunctions. Remarkably in the glomerular layer of the olfactory bulb the density of serotonergic fibers was significantly reduced. Concerning mitochondrial morphology, neurons in Pink1(-/-) mice had less fragmented mitochondria. In contrast, upon acute knock-down of Pink1 increased mitochondrial fragmentation was observed in neuronal cultures. This fragmentation was, however, evened out within days. Taken together, we demonstrate that Pink1-deficient mice exhibit behavioral symptoms of early phases of PD and present systematic experimental evidence for compensation of Pink1-deficiency at the cellular level. Thus, Pink1-deficient mice represent a model for the early phases of PD in which compensation may still impede the onset of neurodegeneration. Consequently, these mice are a valuable tool for studying Pink1-related PD development, as well as for searching for reliable PD biomarkers.


Subject(s)
Gait/physiology , Olfactory Bulb/metabolism , Protein Kinases/metabolism , Serotonergic Neurons/metabolism , Smell/physiology , Adrenergic Neurons/metabolism , Animals , Cell Count , Corpus Striatum/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice , Mitochondria/metabolism , Motor Activity/physiology , Protein Kinases/genetics
11.
Brain ; 134(Pt 7): 2044-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21672962

ABSTRACT

Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells. Studies on telomere lengths in patients with Alzheimer's disease have revealed contrary results and the functional role of telomere shortening on brain ageing and Alzheimer's disease is not known. Here, we have investigated the effects of telomere shortening on adult neurogenesis and Alzheimer's disease progression in mice. The study shows that aged telomerase knockout mice with short telomeres (G3Terc-/-) exhibit reduced dentate gyrus neurogenesis and loss of neurons in hippocampus and frontal cortex, associated with short-term memory deficit in comparison to mice with long telomere reserves (Terc+/+). In contrast, telomere shortening improved the spatial learning ability of ageing APP23 transgenic mice, a mouse model for Alzheimer's disease. Telomere shortening was also associated with an activation of microglia in ageing amyloid-free brain. However, in APP23 transgenic mice, telomere shortening reduced both amyloid plaque pathology and reactive microgliosis. Together, these results provide the first experimental evidence that telomere shortening, despite impairing adult neurogenesis and maintenance of post-mitotic neurons, can slow down the progression of amyloid plaque pathology in Alzheimer's disease, possibly involving telomere-dependent effects on microglia activation.


Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/pathology , Hippocampus/pathology , Neurons/ultrastructure , Plaque, Amyloid/pathology , Telomere/pathology , Age Factors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/metabolism , Bromodeoxyuridine/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle/genetics , Cognition Disorders/etiology , Cognition Disorders/genetics , Disease Models, Animal , Doublecortin Domain Proteins , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/pathology , Microscopy, Electron, Transmission/methods , Microtubule-Associated Proteins/metabolism , Neurogenesis/genetics , Neurons/pathology , Neurons/physiology , Neuropeptides/metabolism , Presenilin-1/metabolism , Synapses/ultrastructure , Telomerase/deficiency , Telomere/genetics , Telomere/ultrastructure
12.
J Neurosci ; 31(6): 2225-37, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21307259

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.


Subject(s)
Cerebral Cortex/ultrastructure , Neurons/cytology , Protein Serine-Threonine Kinases/physiology , Synapses/ultrastructure , Synaptic Vesicles/physiology , Analysis of Variance , Animals , Calcium/metabolism , Cells, Cultured , Electric Stimulation/methods , Embryo, Mammalian , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation, Developmental/genetics , Humans , Immunoprecipitation/methods , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Microscopy, Electron, Transmission , Mutation/genetics , N-Ethylmaleimide-Sensitive Proteins/metabolism , Nerve Tissue Proteins/metabolism , Patch-Clamp Techniques/methods , Potassium Chloride/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Transport/drug effects , Protein Transport/genetics , RNA, Small Interfering/pharmacology , Sodium Channel Blockers/pharmacology , Synaptic Vesicles/drug effects , Synaptic Vesicles/ultrastructure , Synaptosomes/metabolism , Tandem Mass Spectrometry/methods , Tetrodotoxin/pharmacology , Transfection/methods
13.
BMC Neurosci ; 11: 158, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21194452

ABSTRACT

BACKGROUND: Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2) for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX) promoter, which is specific for immature neuronal cells in the CNS. RESULTS: In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus). Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. CONCLUSIONS: This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular mechanisms controlling neurogenesis.


Subject(s)
Brain Mapping/methods , Neurogenesis/genetics , Transgenes/genetics , Animals , Cell Lineage/genetics , Doublecortin Domain Proteins , Doublecortin Protein , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Integrases/biosynthesis , Integrases/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuropeptides/genetics , Stem Cells/cytology , Stem Cells/metabolism , Tamoxifen/pharmacology
14.
Ther Adv Neurol Disord ; 2(1): 51-60, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21180641

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 0.7% of the elderly population (defined as over 65 years of age). PD is clinically characterized by resting tremor, muscular rigidity, hypokinesia and postural instability. These motor symptoms result largely from the deficiency or dysfunction of dopaminergic neurons in the substantia nigra. Histopathological analysis reveals depletion of dopaminergic neurons as well as eosinophilic intracytoplasmic inclusions (Lewy bodies) in surviving neurons of the substantia nigra and other brain regions. The molecular pathogenesis is linked to protein misfolding by compromised alpha-synuclein and/or related proteins (synucleinopathy). Therefore, successful therapy of motor symptoms aims for the restoration of dopaminergic neurotransmission. Pharmacological drug treatment is usually effective only at an early stage of the disease but cannot halt progressive neuronal degeneration. With recent developments in stem cell technology, cell repair or replacement approaches came into focus. Here, we review new therapeutic strategies resulting from the innate propensity of the adult brain to generate new neurons, either by pharmacological stimulation of endogenous adult stem cell population or exogenous cell transplantation modalities.

15.
J Neurosci ; 27(32): 8581-92, 2007 Aug 08.
Article in English | MEDLINE | ID: mdl-17687036

ABSTRACT

Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate cellular responses by analyzing midbrain-r1 development in mouse embryos, which carry different combinations of mutant Fgfr1, Fgfr2, and Fgfr3 alleles. Our results show that the FGFRs act redundantly to support cell survival in the dorsal neuroectoderm, promote r1 tissue identity, and regulate the production of ventral neuronal populations, including midbrain dopaminergic neurons. The compound Fgfr mutants have apparently normal WNT/SHH signaling and neurogenic gene expression in the ventral midbrain, but the number of proliferative neural progenitors is reduced as a result of precocious neuronal differentiation. Our results suggest a SoxB1 family member, Sox3, as a potential FGF-induced transcription factor promoting progenitor renewal. We propose a model for regulation of progenitor cell self-renewal and neuronal differentiation by combinatorial intercellular signals in the ventral midbrain.


Subject(s)
Mesencephalon/embryology , Neurons/physiology , Receptors, Fibroblast Growth Factor/physiology , Rhombencephalon/embryology , Stem Cells/physiology , Animals , Cell Differentiation/physiology , Female , Gene Expression Regulation, Developmental/physiology , Mesencephalon/cytology , Mesencephalon/physiology , Mice , Mice, Transgenic , Neurons/cytology , Pregnancy , Rhombencephalon/cytology , Rhombencephalon/physiology , Stem Cells/cytology
16.
J Biol Chem ; 282(18): 13680-91, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17331951

ABSTRACT

Mutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface. Furthermore, we generated deletion mutants lacking the H-helix, the kink, and the entire C terminus. When transfected into neural and nonneural cell lines, steady-state levels of G-helix breaking and kink deletion mutants were dramatically lower than wild-type DJ-1. The effects of H-helix breakers were comparably smaller, and the non-helix breaking mutants only slightly destabilized DJ-1. The decreased steady-state levels were due to accelerated protein degradation involving in part the proteasome. G-helix breaking DJ-1 mutations abolished dimer formation. These structural perturbations had functional consequences on the cytoprotective activities of DJ-1. The destabilizing mutations conferred reduced cytoprotection against H(2)O(2) in transiently retransfected DJ-1 knock-out mouse embryonic fibroblasts. The loss of survival promoting activity of the DJ-1 mutants with destabilizing C-terminal mutations correlated with impaired anti-apoptotic signaling. We found that wild-type, but not mutant DJ-1 facilitated the Akt pathway and simultaneously blocked the apoptosis signal-regulating kinase 1, with which DJ-1 interacted in a redox-dependent manner. Thus, the G-helix and kink are critical determinants of the C-terminal helix-kink-helix motif, which is absolutely required for stability and the regulation of survival-promoting redox signaling of the Parkinson disease-associated protein DJ-1.


Subject(s)
Apoptosis , Cytoprotection , Mutation, Missense , Oncogene Proteins/biosynthesis , Protein Folding , Signal Transduction , Amino Acid Motifs/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cytoprotection/drug effects , Cytoprotection/genetics , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Humans , Hydrogen Peroxide/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , Mice , Mice, Knockout , Mutagenesis, Site-Directed , Oncogene Proteins/genetics , Oxidants/pharmacology , PC12 Cells , Parkinson Disease/genetics , Parkinson Disease/metabolism , Peroxiredoxins , Protein Deglycase DJ-1 , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , Protein Structure, Tertiary/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects , Signal Transduction/genetics , Structure-Activity Relationship
17.
Dev Biol ; 303(1): 231-43, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17150206

ABSTRACT

The mid-/hindbrain organizer (MHO) is characterized by the expression of a network of genes, which controls the patterning and development of the prospective midbrain and anterior hindbrain. One key molecule acting at the MHO is the fibroblast growth factor (Fgf) 8. Ectopic expression of Fgf8 induces genes that are normally expressed at the mid-/hindbrain boundary followed by the induction of midbrain and anterior hindbrain structures. Inactivation of the Fgf receptor (Fgfr) 1 gene, which was thought to be the primary transducer of the Fgf8 signal at the MHO, in the mid-/hindbrain region, leads to a deletion of dorsal structures of the mid-/hindbrain region, whereas ventral tissues are less severely affected. This suggests that other Fgfrs might be responsible for ventral mid-/hindbrain region development. Here we report the analysis of Fgfr2 conditional knockout mice, lacking the Fgfr2 in the mid-/hindbrain region and of Fgfr3 knockout mice with respect to the mid-/hindbrain region. In both homozygous mouse mutants, patterning of the mid-/hindbrain region is not altered, neuronal populations develop normal and are maintained into adulthood. This analysis shows that the Fgfr2 and the Fgfr3 on their own are dispensable for the development of the mid-/hindbrain region. We suggest functional redundancy of Fgf receptors in the mid-/hindbrain region.


Subject(s)
Body Patterning/physiology , Mesencephalon/embryology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Rhombencephalon/embryology , Animals , Fibroblast Growth Factor 8/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Knockout , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics
18.
J Comp Neurol ; 500(3): 542-56, 2007 Jan 20.
Article in English | MEDLINE | ID: mdl-17120291

ABSTRACT

The mitogen-activated protein kinases (MAPKs), also called extracellular signal-regulated kinases (ERKs), are a group of serine/threonine terminal protein kinases activated downstream of a pleiotrophy of transmembrane receptors. Main intracellular components of the MAPK signalling pathway are the RAF, MEK, and ERK proteins, which work in a cascade of activator and effector proteins. They regulate many fundamental cellular functions, including cell proliferation, cell survival, and cell differentiation by transducing extracellular signals to cytoplasmic and nuclear effectors. To reveal more details about possible activation cascades in this pathway, the present study gives a complete description of the differential expression of Braf, Mek1, Mek2, Mek5, Erk1, Erk2, Erk3, and Erk5 in the adult murine brain by way of in situ hybridization analysis. In this study, we found that each gene is widely expressed in the whole brain, except for Mek2, but each displays a very distinct expression pattern, leading to distinct interactions of the MAPK components within different regions. Most notably we found that 1) Braf and Erk3 are coexpressed in the hippocampus proper, confirming a possible functional interaction; 2) in most forebrain areas, Mek5 and Erk5 are coexpressed; and 3) in the neurogenic regions of the brain, namely, the olfactory bulb and the dentate gyrus, Braf is absent, indicating that other activator proteins have to take over its function. Despite these differences, our results show widespread coexpression of the pathway components, thereby confirming the hypothesis of redundant functions among several MEK and ERK proteins in some regions of the brain.


Subject(s)
Brain/enzymology , Gene Expression Regulation, Enzymologic/physiology , MAP Kinase Signaling System/genetics , RNA, Messenger/metabolism , Animals , Brain/anatomy & histology , Dentate Gyrus/anatomy & histology , Dentate Gyrus/enzymology , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/anatomy & histology , Olfactory Bulb/enzymology , Proto-Oncogene Proteins B-raf/genetics
19.
Gene Expr Patterns ; 6(5): 489-94, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16458079

ABSTRACT

The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) is indispensable for murine embryonic development; yet, the cellular mechanisms leading to embryonic death around gastrulation are still unclear. To investigate PHGPx expression patterns during embryogenesis, we performed a detailed analysis that revealed a complex expression profile. Up to embryonic day 9.5, PHGPx was ubiquitously expressed, which was, albeit to a lower extent, maintained throughout later stages of embryogenesis. Notably, strong expression was frequently observed in epithelial tissue. A transient increase in PHGPx expression was detected in developing tissues, suggesting a crucial role for PHGPx in proliferation and differentiation. By semi-quantitative RT-PCR analysis we observed that the cytosolic form of PHGPx was present in embryonic and somatic tissues whereas the mitochondrial and nuclear forms were detectable only in testicular tissue. This strongly suggests that it is the cytosolic form of PHGPx that is indispensable for embryonic development.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Glutathione Peroxidase/genetics , Animals , Base Sequence , DNA Primers , In Situ Hybridization , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase , Reverse Transcriptase Polymerase Chain Reaction
20.
Mol Cell Neurosci ; 26(1): 101-11, 2004 May.
Article in English | MEDLINE | ID: mdl-15121182

ABSTRACT

The secreted glycoprotein WNT1 is expressed in the caudal midbrain and is essential for proper development of the entire mid-/hindbrain region. To get better insights into Wnt1 function in the mid-/hindbrain region, we ectopically expressed Wnt1 under the control of the endogenous En1 promoter, thereby extending Wnt1 expression rostrally into the anterior midbrain and caudally into rhombomere 1. In these transgenic mice, the position of the mid-/hindbrain organizer is not altered and pattern formation is not changed. During midgestation, ectopic Wnt1 induced strong overproliferation of precursor cells only in the caudal midbrain in a gene dosage-dependent manner. Enhanced proliferation is at least in part mediated by shortening of the cell cycle length. In adults, Wnt1 exhibited a cell size promoting effect specifically on neurons. We suggest that Wnt1 acts as a regulator of proliferation of specific precursor populations in the developing mid-/hindbrain region and is only secondarily involved in maintenance of the mid-/hindbrain organizer.


Subject(s)
Mesencephalon/embryology , Neurons/metabolism , Proto-Oncogene Proteins/metabolism , Rhombencephalon/embryology , Stem Cells/metabolism , Animals , Body Patterning/genetics , Cell Differentiation/genetics , Cell Division/genetics , Female , Fetus , Gene Dosage , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Mesencephalon/cytology , Mesencephalon/metabolism , Mice , Mice, Transgenic , Neurons/cytology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Rhombencephalon/cytology , Rhombencephalon/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Stem Cells/cytology , Wnt Proteins , Wnt1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...