Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Rev. biol. trop ; 71(1)dic. 2023.
Article in English | SaludCR, LILACS | ID: biblio-1514963

ABSTRACT

Introduction: The lack of knowledge on seed germination and seedling establishment is a main constraint for the restoration of degraded areas, including the tropical dry forest known as Caatinga. Objective: To assess reserve and secondary metabolite mobilization during seed germination and seedling establishment in Erythina velutina. Methods: We scarified, disinfected, imbibed, sown between towel paper, and incubated seeds under controlled conditions. We hydroponically cultivated seedlings in a greenhouse. We harvested cotyledons at seed imbibition, radicle protrusion, hypocotyl emergence, apical hook formation and expansion of cordiform leaves, first trifoliate leaf, and second trifoliate leaf. Results: Seeds contained approximately 20 % starch, 14.5 % storage proteins, 11.6 % neutral lipids, and 5.7 % non-reducing sugars on a dry weight basis. Soluble sugars were mainly consumed from hypocotyl emergence to apical hook formation, while major reserves were mobilized from apical hook formation to expansion of first trifoliate leaf. Enzymatic activity increased from mid to late seedling establishment, causing the mobilization of starch, oils, and proteins. Terpenoid-derivatives, flavonoids, phenolic acids, and alkaloids were detected. Flavonoids and phenolic acids were present at almost all stages and terpenoid-derivatives disappeared at expansion of cordiform leaves. Conclusion: Soluble sugars support early seedling growth, while starch, oils and proteins are simultaneously mobilized from mid to late establishment by amylases, lipases, and acid proteases. The cotyledons contain secondary metabolites, which may act in seedling defense. High content of reserves and presence of secondary metabolites in the cotyledons could enable E. velutina seedlings endure stress, validating their use in the restoration of degraded areas.


Introducción: La falta de conocimiento sobre la germinación de semillas y el establecimiento de plántulas es una de las principales limitaciones para la restauración de áreas degradadas, incluido el bosque seco tropical conocido como Caatinga. Objetivo: Evaluar la movilización de reservas y metabolitos secundarios durante estas etapas de desarrollo en Erythina velutina. Métodos: Las semillas fueron escarificadas, desinfectadas, embebidas, sembradas entre toallas de papel e incubadas bajo condiciones controladas. Cultivamos las plántulas hidropónicamente en un invernadero. Recolectamos los cotiledones en la imbibición de la semilla, la protrusión de la radícula, la emergencia del hipocótilo, la formación del gancho apical y la expansión de las hojas cordiformes, la primera y segunda hoja trifoliada. Resultados: Las semillas contenían 20 % de almidón, 14.5 % de proteínas de almacenamiento, 11.6 % de lípidos neutros y 5.7 % de azúcares no reductores en peso seco. Los azúcares solubles se consumieron desde la emergencia del hipocótilo hasta la formación del gancho apical. Las principales reservas se movilizaron desde la formación del gancho apical hasta la expansión de la primera hoja trifoliada. La actividad enzimática aumentó desde la mitad hasta el final del establecimiento de las plántulas, movilizando almidón, aceites y proteínas. Se detectaron derivados de terpenoides, flavonoides, ácidos fenólicos y alcaloides. Los flavonoides y los ácidos fenólicos estuvieron en casi todas las etapas y los derivados terpenoides desaparecieron en la expansión de las hojas cordiformes. Conclusión: Los azúcares solubles apoyan el crecimiento temprano de las plántulas; el almidón, los aceites y las proteínas se movilizan simultáneamente desde el establecimiento medio hasta el final por amilasas, lipasas y proteasas ácidas. Los cotiledones contienen metabolitos secundarios, que pueden actuar en la defensa de las plántulas. El alto contenido de reservas y los metabolitos secundarios en los cotiledones podría permitir que las plántulas de E. velutina toleren estrés, validando su uso en la restauración de áreas degradadas.


Subject(s)
Germination , Erythrina , Environmental Restoration and Remediation/methods , Fabaceae , Brazil
2.
Front Plant Sci ; 13: 947558, 2022.
Article in English | MEDLINE | ID: mdl-36161018

ABSTRACT

Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.

3.
J Adv Res ; 34: 123-136, 2021 12.
Article in English | MEDLINE | ID: mdl-35024185

ABSTRACT

Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.


Subject(s)
Alkaloids , Erythrina , Gene Expression Profiling , Plant Leaves/genetics , Seeds/genetics , Tandem Mass Spectrometry
4.
J Plant Physiol ; 171(15): 1362-71, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25046757

ABSTRACT

Seedling establishment in saline conditions is crucial for plant survival and productivity. This study was performed to elucidate the biochemical and physiological mechanisms involved with the recovery and establishment of cashew seedlings subjected to salinity. The changes in the Na+ levels and K/Na ratios, associated with relative water content, indicated that osmotic effects were more important than salt toxicity in the inhibition of seedling growth and cotyledonary protein mobilization. Salinity (50mM NaCl) induced a strong delay in protein breakdown and amino acid accumulation in cotyledons, and this effect was closely related to azocaseinolytic and protease activities. In parallel, proline and free amino acids accumulated in the leaves whereas the protein content decreased. Assays with specific inhibitors indicated that the most important proteases in cotyledons were of serine, cysteine and aspartic types. Proteomic analysis revealed that most of the cashew reserve proteins are 11S globulin-type and that these proteins were similarly degraded under salinity. In the late establishment phase, the salt-treated seedlings displayed an unexpected recovery in terms of leaf growth and N mobilization from cotyledon to leaves. This recovery coordinately involved a great leaf expansion, decreased amino acid content and increased protein synthesis in leaves. This response occurred in parallel with a prominent induction in the cotyledon proteolytic activity. Altogether, these data suggest that a source-sink mechanism involving leaf growth and protein synthesis may have acted as an important sink for reserve mobilization contributing to the seedling establishment under salinity. The amino acids that accumulated in the leaves may have exerted negative feedback to act as a signal for the induction of protease activity in the cotyledon. Overall, these mechanisms employed by cashew seedlings may be part of an adaptive process for the efficient rescue of cotyledonary proteins, as the cashew species originates from an environment with N-poor soil and high salinity.


Subject(s)
Anacardium/metabolism , Globulins/metabolism , Peptide Hydrolases/metabolism , Proteomics , Amino Acids/metabolism , Anacardium/drug effects , Anacardium/growth & development , Biological Transport , Cotyledon/drug effects , Cotyledon/growth & development , Cotyledon/metabolism , Osmotic Pressure , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Proline/metabolism , Salinity , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Sodium Chloride/pharmacology , Stress, Physiological
5.
J Plant Physiol ; 166(1): 80-9, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18448194

ABSTRACT

Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.


Subject(s)
Anacardium/drug effects , Anacardium/metabolism , Cotyledon/metabolism , Salinity , Seedlings/drug effects , Seedlings/metabolism , Sodium Chloride/pharmacology , Amino Acids/metabolism , Anacardium/growth & development , Biomass , Cotyledon/drug effects , Lipid Metabolism/drug effects , Plant Proteins/metabolism , Solubility/drug effects , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...