Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(8): e3002218, 2023 08.
Article in English | MEDLINE | ID: mdl-37603597

ABSTRACT

Nutrition is a primary determinant of health, but responses to nutrition vary with genotype. Epistasis between mitochondrial and nuclear genomes may cause some of this variation, but which mitochondrial loci and nutrients participate in complex gene-by-gene-by-diet interactions? Furthermore, it remains unknown whether mitonuclear epistasis is involved only in the immediate responses to changes in diet, or whether mitonuclear genotype might modulate sensitivity to variation in parental nutrition, to shape intergenerational fitness responses. Here, in Drosophila melanogaster, we show that mitonuclear epistasis shapes fitness responses to variation in dietary lipids and amino acids. We also show that mitonuclear genotype modulates the parental effect of dietary lipid and amino acid variation on offspring fitness. Effect sizes for the interactions between diet, mitogenotype, and nucleogenotype were equal to or greater than the main effect of diet for some traits, suggesting that dietary impacts cannot be understood without first accounting for these interactions. Associating phenotype to mtDNA variation in a subset of populations implicated a C/T polymorphism in mt:lrRNA, which encodes the 16S rRNA of the mitochondrial ribosome. This association suggests that directionally different responses to dietary changes can result from variants on mtDNA that do not change protein coding sequence, dependent on epistatic interactions with variation in the nuclear genome.


Subject(s)
Diet , Drosophila melanogaster , Animals , RNA, Ribosomal, 16S/genetics , Drosophila melanogaster/genetics , Genotype , Amino Acids , DNA, Mitochondrial
2.
Genetics ; 224(2)2023 05 26.
Article in English | MEDLINE | ID: mdl-37094603

ABSTRACT

Epigenetic regulation varies with the environment. In the fruit fly Drosophila melanogaster, environmental temperature can affect chromatin-based gene regulation. Genes regulated by the Polycomb group can vary in their transcriptional output in response to changes in temperature, which typically increases with decreasing temperature. Here, we studied temperature-sensitive expression of Polycomb group target genes on a genome-wide scale, as well as temperature-sensitive enrichment of two histone modifications associated with the regulation of Polycomb group target genes, H3K27me3 and H3K4me3. We investigated temperature-sensitivity in adult flies, and possible differences thereof between populations adapted to temperate and tropical climates. Compared to genes not targeted by the Polycomb group, an elevated number of target genes showed higher expression at the lower temperature, as it is typically observed for Polycomb group regulation. Many of the Polycomb group target genes also exhibited temperature-sensitive H3K4me3 enrichment in the same direction, and the H3K4me3 temperature response correlated positively with that of expression. A small set of target sites also showed temperature-sensitive enrichment of H3K27me3, again with a higher proportion corresponding to increased transcriptional activation at the lower temperature. Overall, higher transcriptional activity at lower temperature was less pronounced in males compared to females, and in temperate compared to tropical flies. Possible trans- and cis-acting factors responsible for reduced expression plasticity in temperate flies were identified, including factors belonging to the Trithorax group and insulator binding proteins, respectively.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Male , Female , Drosophila melanogaster/metabolism , Histones/genetics , Histones/metabolism , Epigenesis, Genetic , Temperature , Gene Expression Regulation , Polycomb-Group Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/metabolism
3.
G3 (Bethesda) ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34544136

ABSTRACT

Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here, we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although in general, temperature-sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Climate , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Male , Polycomb-Group Proteins , Temperature
4.
J Evol Biol ; 33(5): 694-713, 2020 05.
Article in English | MEDLINE | ID: mdl-32053259

ABSTRACT

Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. Although numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto-nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto-nuclear interactions remains unknown. Here, we address these questions, creating a fully crossed set of replicated cyto-nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto-nuclear interactions shape lifespan and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto-nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto-nuclear interactions result in sex differences in the expression of other components of organismal life history.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect , Genome, Mitochondrial , Longevity/genetics , Animals , Drosophila melanogaster/microbiology , Female , Genetic Variation , Male , Wolbachia
5.
Genes (Basel) ; 10(7)2019 06 28.
Article in English | MEDLINE | ID: mdl-31261809

ABSTRACT

Drosophila melanogaster recently spread from its tropical origin in Africa and became a cosmopolitan species that has adapted to a wide range of different thermal environments, including temperate climates. An important limiting factor of temperate climates has probably been their low and varying temperatures. The transcriptional output of genes can vary across temperatures, which might have been detrimental while settling in temperate environments. The reduction of temperature-sensitive expression of functionally important genes to ensure consistent levels of gene expression might have been relevant while adapting to such environments. In this study, we focus on the gene vestigial (vg) whose product is a key factor in wing development. We provide evidence that temperature-sensitivity of vg has been buffered in populations from temperate climates. We investigated temperature-sensitivity of vg gene expression in six natural populations, including four temperate populations (three from Europe and one from high-altitude Africa), and two tropical populations from the ancestral species range. All temperate populations exhibited a lower degree of temperature-induced expression plasticity than the tropical populations.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nuclear Proteins/genetics , Temperature , Africa , Animals , Europe , Female , Gene Expression , Male
6.
Genetics ; 200(2): 591-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855066

ABSTRACT

Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation , Genetic Loci , Selection, Genetic , Thermosensing/genetics , Animals , Gene Expression , Genes, Reporter , Genetics, Population , Haplotypes , Polymorphism, Genetic , Sequence Analysis, DNA
7.
G3 (Bethesda) ; 4(9): 1635-45, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24970882

ABSTRACT

There is a growing interest in investigating the relationship between genes with signatures of natural selection and genes identified in QTL mapping studies using combined population and quantitative genetics approaches. We dissected an X-linked interval of 6.2 Mb, which contains two QTL underlying variation in chill coma recovery time (CCRT) in Drosophila melanogaster from temperate (European) and tropical (African) regions. This resulted in two relatively small regions of 131 kb and 124 kb. The latter one co-localizes with a very strong selective sweep in the European population. We examined the genes within and near the sweep region individually using gene expression analysis and P-element insertion lines. Of the genes overlapping with the sweep, none appears to be related to CCRT. However, we have identified a new candidate gene of CCRT, brinker, which is located just outside the sweep region and is inducible by cold stress. We discuss these results in light of recent population genetics theories on quantitative traits.


Subject(s)
Adaptation, Physiological/genetics , Cold Temperature , Drosophila melanogaster/genetics , Quantitative Trait Loci , Africa , Animals , Chromosome Mapping , Drosophila melanogaster/physiology , Europe , Female , Gene Expression , Genes, Insect , Genes, X-Linked
8.
Vet Ophthalmol ; 15(5): 333-44, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22288655

ABSTRACT

OBJECTIVE: To investigate the density and distribution of conjunctival goblet cells (GC) and study the anatomy and microscopic characteristics of glands associated with the eye in chinchillas (Chinchilla Laniger). PROCEDURE: 12 chinchillas were included in the study. Conjunctiva (divided into four regions), eyelids, and glands were embedded in paraffin wax, sectioned, stained, and analyzed. RESULTS: Highest GC densities were found in the palpebral region of the nasal and temporal conjunctiva of both eyelids (GC index: 25.1-18.2%), and lowest densities, in the bulbar and marginal region of the nasal and temporal conjunctiva of both eyelids (GC index: 1.5-0.0%). Meibomian glands extend along the entire length of both eyelids, and the whole glandular complex broadens toward the temporal canthus. This is macroscopically visible through the conjunctiva. The openings of the Meibomian glands are macroscopically not discernible. The light pink, smooth, and crescent-shaped lacrimal gland lies next to the aforementioned broadened part of the Meibomian glands in the temporal canthus. The whitish, 0.9-cm-long, smooth Harderian gland is firmly attached to the posterior part of the globe and extends nasally from the optic nerve to the equator. Furthermore, chinchillas possess two lacrimal puncta, situated on the inner conjunctival surface of both eyelids near the medial canthus. A pigmented lacrimal canaliculus originates from each punctum. The vestigial nictitating membrane is supported by a hyaline cartilage and is pigmented at its free margin. CONCLUSIONS: Chinchillas possess a Harderian gland, a lacrimal gland, and Meibomian glands. The GC density in the nasal and temporal palpebral conjunctiva is higher than in guinea pigs.


Subject(s)
Chinchilla/anatomy & histology , Conjunctiva/cytology , Goblet Cells/cytology , Harderian Gland/anatomy & histology , Lacrimal Apparatus/anatomy & histology , Meibomian Glands/anatomy & histology , Animals , Eye/anatomy & histology , Eye/cytology , Goblet Cells/physiology , Harderian Gland/physiology , Lacrimal Apparatus/physiology , Meibomian Glands/physiology
9.
J Invest Dermatol ; 127(3): 687-97, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17082783

ABSTRACT

Hyaluronan (HA), a major component of the cutaneous extracellular-matrix, is involved in tissue repair. Human skin is exposed to and damaged by UVB-irradiation. Here, we investigate the regulation of HA metabolism in human skin during acute UVB-induced inflammation. Expression of HA synthesizing (HAS) and degrading enzymes hyaluronidase (HYAL) as evaluated by quantitative reverse transcribed PCR in response to UVB differed when fibroblasts and HaCaT-keratinocytes, representative cell types in dermis and epidermis, respectively, were compared. Both demonstrated temporally different expression patterns of these genes 3- and 24-hours post-irradiation. This resulted 24-hours post-irradiation in an increase in HAS gene expression in both fibroblasts and HaCaT-keratinocytes, and an increase in HYAL expression only in fibroblasts. HA-production as analyzed by the HA content of conditioned medium was reduced in HaCaT and fibroblast cultures 3-hours post-irradiation, whereas HA increased in HaCaT-cultures 24-hours post-irradiation but remained suppressed in fibroblasts-cultures. Consistently, immunohistochemical staining for HA in human skin 24-hours post-irradiation demonstrated an increased epidermal HA, but a decrease in the dermal compartment. Moreover, analysis of the HA content of dermal microdialysis-fluid revealed increased accumulation of HA degradation products 24-hours post-irradiation. These data demonstrate that there is a complex temporal and spatial regulation of HA-metabolism in skin in response to UVB irradiation.


Subject(s)
Dermis/metabolism , Epidermis/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Hyaluronic Acid/metabolism , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays , Cells, Cultured , Dermis/radiation effects , Epidermis/radiation effects , Humans , Keratinocytes/metabolism , Male , RNA, Messenger/metabolism , Skin/cytology , Skin Physiological Phenomena , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...