Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361766

ABSTRACT

(1) Hypophosphatasia (HPP) is a rare inherited disease caused by mutations (pathogenic variants) in the ALPL gene which encodes tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by impaired bone mineral metabolism due to the low enzymatic activity of TNSALP. Knowledge about the structure of the gene and the features and functions of various ALPL gene variants, taking into account population specificity, gives an understanding of the hereditary nature of the disease, and contributes to the diagnosis, prevention, and treatment of the disease. The purpose of the study was to describe the spectrum and analyze the functional features of the ALPL gene variants, considering various HPP subtypes and clinical symptoms in Russian children. (2) From 2014−2021, the study included the blood samples obtained from 1612 patients with reduced alkaline phosphatase activity. The patients underwent an examination with an assessment of their clinical symptoms and biochemical levels of TNSALP. DNA was isolated from dried blood spots (DBSs) or blood from the patients to search for mutations in the exons of the ALPL gene using Sanger sequencing. The PCR products were sequenced using a reagent BigDye Terminator 3.1 kit (Applied Biosystems). Statistical analysis was performed using the GraphPad Prism 8.01 software. (3) The most common clinical symptoms in Russian patients with HPP and two of its variants (n = 22) were bone disorders (75%), hypomyotonia (50%), and respiratory failure (50%). The heterozygous carriage of the causal variants of the ALPL gene was detected in 225 patients. A total of 2 variants were found in 27 patients. In this group (n = 27), we identified 28 unique variants of the ALPL gene, of which 75.0% were missense, 17.9% were frameshift, 3.6% were splicing variants, and 3.6% were duplications. A total of 39.3% (11/28) of the variants were pathogenic, with two variants being probably pathogenic, and 15 variants had unknown clinical significance (VUS). Among the VUS group, 28.6% of the variants (7/28) were discovered by us for the first time. The most common variants were c.571G > A (p.Glu191Lys) and c.1171del (Arg391Valfs*12), with frequencies of 48.2% (13/28) and 11% (3/28), respectively. It was found that the frequency of nonsense variants of the ALPL gene was higher (p < 0.0001) in patients with the perinatal form compared to the infantile and childhood forms of HPP. Additionally, the number of homozygotes in patients with the perinatal form exceeded (p < 0.01) the frequencies of these genotypes in children with infantile and childhood forms of HPP. On the contrary, the frequencies of the compound-heterozygous and heterozygous genotypes were higher (p < 0.01) in patients with infantile childhood HPP than in perinatal HPP. In the perinatal form, residual TNSALP activity was lower (p < 0.0005) in comparison to the infantile and childhood (p < 0.05) forms of HPP. At the same time, patients with the heterozygous and compound-heterozygous genotypes (mainly missense variants) of the ALPL gene had greater residual activity (of the TNSALP protein) regarding those homozygous patients who were carriers of the nonsense variants (deletions and duplications) of the ALPL gene. Residual TNSALP activity was lower (p < 0.0001) in patients with pathogenic variants encoding the amino acids from the active site and the calcium and crown domains in comparison with the nonspecific region of the protein.


Subject(s)
Hypophosphatasia , Humans , Child , Hypophosphatasia/genetics , Alkaline Phosphatase , Mutation , Heterozygote
2.
Brain ; 145(7): 2301-2312, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35373813

ABSTRACT

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Subject(s)
ADAM Proteins , Brain Diseases , Drug Resistant Epilepsy , Nerve Tissue Proteins , ADAM Proteins/genetics , ADAM Proteins/metabolism , Atrophy , Brain Diseases/genetics , Disks Large Homolog 4 Protein , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
Mol Genet Metab Rep ; 10: 61-66, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28119821

ABSTRACT

Enzyme replacement therapy (ERT) can produce anti-drug antibody (ADA) responses that reduce efficacy or lead to hypersensitivity reactions. Six patients with severe mucopolysaccharidosis type I (MPS I/Hurler syndrome) who did not receive hematopoietic stem cell transplantation underwent an immunosuppression regimen prior to initiating ERT with laronidase. The primary endpoint for immune tolerance induction was the number of patients with an ADA titer ≤ 3200 after 24 weeks of laronidase at the labeled dose. Cyclosporine levels were measured weekly and doses adjusted to maintain trough levels above 400 mg/mL. A 6-week (Cohort 1) or 12-week (Cohort 2) immune tolerance induction period with cyclosporine (initial dose: 15 or 20 mg/kg/day), azathioprine (initial dose: 2.5 or 5 mg/kg/day) and low-dose laronidase infusions (0.058-0.29 mg/kg/week) was followed by an immune-challenge period with laronidase infusions at the labeled dose (0.58 mg/kg/week) for 24 weeks. Anti-laronidase IgG titers were determined following treatment. There were 147 treatment-emergent adverse events reported, most of which were mild and not related to the study treatment. While there was no evidence of immune tolerance in 3 of 3 patients in Cohort 1, there were some indications of immune tolerance induction in 2 of 3 patients in Cohort 2. Patients with lower ADA titers showed greater reductions in urinary glycosaminoglycan excretion. Routine monitoring of plasma cyclosporine parent-compound levels by high pressure liquid chromatography proved difficult for clinical practice. The evolving clinical management of MPS I and a better understanding of the clinical impact of laronidase-related immunogenicity require reassessment of immune modulation strategies in patients with MPS I receiving laronidase treatment. CLINICAL TRIAL REGISTRATION: NCT00741338.

4.
Mol Cytogenet ; 8: 82, 2015.
Article in English | MEDLINE | ID: mdl-26523151

ABSTRACT

BACKGROUND: In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. RESULTS: Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger's syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient's condition. CONCLUSIONS: Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.

5.
Mol Cytogenet ; 6(1): 53, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24283533

ABSTRACT

BACKGROUND: Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach. RESULTS: Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes. CONCLUSIONS: Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.

SELECTION OF CITATIONS
SEARCH DETAIL
...