Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(17): e2211631120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37071676

ABSTRACT

Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.


Subject(s)
Chronic Pain , Fibromyalgia , Humans , Neutrophils , Hyperalgesia , Ganglia, Sensory
2.
Nat Commun ; 13(1): 7029, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396641

ABSTRACT

Neutrophil diapedesis is an immediate step following infections and injury and is driven by complex interactions between leukocytes and various components of the blood vessel wall. Here, we show that perivascular mast cells (MC) are key regulators of neutrophil behaviour within the sub-endothelial space of inflamed venules. Using confocal intravital microscopy, we observe directed abluminal neutrophil motility along pericyte processes towards perivascular MCs, a response that created neutrophil extravasation hotspots. Conversely, MC-deficiency and pharmacological or genetic blockade of IL-17A leads to impaired neutrophil sub-endothelial migration and breaching of the pericyte layer. Mechanistically, identifying MCs as a significant cellular source of IL-17A, we establish that MC-derived IL-17A regulates the enrichment of key effector molecules ICAM-1 and CXCL1 in nearby pericytes. Collectively, we identify a novel MC-IL-17A-pericyte axis as modulator of the final steps of neutrophil diapedesis, with potential translational implications for inflammatory disorders driven by increased neutrophil diapedesis.


Subject(s)
Neutrophils , Transendothelial and Transepithelial Migration , Neutrophils/physiology , Pericytes , Interleukin-17 , Mast Cells
3.
FASEB J ; 36(1): e22065, 2022 01.
Article in English | MEDLINE | ID: mdl-34847625

ABSTRACT

Neutrophil trafficking is a key component of the inflammatory response. Here, we have investigated the role of the immunomodulatory lectin Galectin-9 (Gal-9) on neutrophil recruitment. Our data indicate that Gal-9 is upregulated in the inflamed vasculature of RA synovial biopsies and report the release of Gal-9 into the extracellular environment following endothelial cell activation. siRNA knockdown of endothelial Gal-9 resulted in reduced neutrophil adhesion and neutrophil recruitment was significantly reduced in Gal-9 knockout mice in a model of zymosan-induced peritonitis. We also provide evidence for Gal-9 binding sites on human neutrophils; Gal-9 binding induced neutrophil activation (increased expression of ß2 integrins and reduced expression of CD62L). Intra-vital microscopy confirmed a pro-recruitment role for Gal-9, with increased numbers of transmigrated neutrophils following Gal-9 administration. We studied the role of both soluble and immobilized Gal-9 on human neutrophil recruitment. Soluble Gal-9 significantly strengthened the interaction between neutrophils and the endothelium and inhibited neutrophil crawling on ICAM-1. When immobilized, Gal-9 functioned as an adhesion molecule and captured neutrophils from the flow. Neutrophils adherent to Gal-9 exhibited a spread/activated phenotype that was inhibited by CD18 and CD44 neutralizing antibodies, suggesting a role for these molecules in the pro-adhesive effects of Gal-9. Our data indicate that Gal-9 is expressed and released by the activated endothelium and functions both in soluble form and when immobilized as a neutrophil adhesion molecule. This study paves the way for further investigation of the role of Gal-9 in leukocyte recruitment in different inflammatory settings.


Subject(s)
CD18 Antigens/metabolism , Galectins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hyaluronan Receptors/metabolism , Neutrophils/metabolism , Transendothelial and Transepithelial Migration , Animals , Cell Adhesion , Humans , Mice
4.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34363750

ABSTRACT

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Subject(s)
Autophagy/physiology , Endothelial Cells/physiology , Neutrophil Infiltration/physiology , Transendothelial and Transepithelial Migration/physiology , Animals , Chemotaxis, Leukocyte/physiology , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Intercellular Junctions/physiology , Mice , Mice, Inbred C57BL , Neutrophils/physiology
5.
Immunity ; 54(7): 1494-1510.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34033752

ABSTRACT

Aging is associated with dysregulated immune functions. Here, we investigated the impact of age on neutrophil diapedesis. Using confocal intravital microscopy, we found that in aged mice, neutrophils adhered to vascular endothelium in inflamed tissues but exhibited a high frequency of reverse transendothelial migration (rTEM). This retrograde breaching of the endothelium by neutrophils was governed by enhanced production of the chemokine CXCL1 from mast cells that localized at endothelial cell (EC) junctions. Increased EC expression of the atypical chemokine receptor 1 (ACKR1) supported this pro-inflammatory milieu in aged venules. Accumulation of CXCL1 caused desensitization of the chemokine receptor CXCR2 on neutrophils and loss of neutrophil directional motility within EC junctions. Fluorescent tracking revealed that in aged mice, neutrophils undergoing rTEM re-entered the circulation and disseminated to the lungs where they caused vascular leakage. Thus, neutrophils stemming from a local inflammatory site contribute to remote organ damage, with implication to the dysregulated systemic inflammation associated with aging.


Subject(s)
Aging/immunology , Biological Transport/immunology , Inflammation/immunology , Neutrophils/immunology , Animals , Chemokine CXCL1/immunology , Endothelial Cells/immunology , Endothelium, Vascular/immunology , Female , Intercellular Junctions/immunology , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Interleukin-8B/immunology , Venules/immunology
6.
Front Immunol ; 11: 10, 2020.
Article in English | MEDLINE | ID: mdl-32117219

ABSTRACT

The targeted delivery of therapies to diseased tissues offers a safe opportunity to achieve optimal efficacy while limiting systemic exposure. These considerations apply to many disease indications but are especially relevant for rheumatoid arthritis (RA), as RA is a systemic autoimmune disease which affects multiple joints. We have identified an antibody that is specific to damaged arthritic cartilage (anti-ROS-CII) that can be used to deliver treatments specifically to arthritic joints, yielding augmented efficacy in experimental arthritis. In the current study, we demonstrate that scaffolds enriched with bioactive payloads can be delivered precisely to an inflamed joint and achieve superior efficacy outcomes consistent with the pharmacological properties of these payloads. As a scaffold, we have used extracellular vesicles (EVs) prepared from human neutrophils (PMNs), which possess intrinsic anti-inflammatory properties and the ability to penetrate inflamed arthritic cartilage. EV fortified with anti-ROS-CII (EV/anti-ROS-CII) retained anti-ROS-CII specificity and bound exclusively to the damaged cartilage. Following systemic administration, EV/anti-ROS-CII (a) exhibited the ability to localize specifically in the arthritic joint in vivo and (b) was able to specifically target single (viral IL-10 or anti-TNF) or combined (viral IL-10 and anti-TNF) anti-inflammatory treatments to the arthritic joint, which accelerated attenuation of clinical and synovial inflammation. Overall, this study demonstrates the attainability of targeting a pro-resolving biological scaffold to the arthritic joint. The potential of targeting scaffolds such as EV, nanoparticles, or a combination thereof alongside combined therapeutics is paramount for designing systemically administered broad-spectrum of anti-inflammatory treatments.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cartilage/immunology , Cartilage/pathology , Drug Delivery Systems/methods , Extracellular Vesicles , Animals , Female , Healthy Volunteers , Humans , Interleukin-10/administration & dosage , Knee Joint/drug effects , Leukocytes/cytology , Mice , Mice, Inbred C57BL , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology , Viral Proteins/administration & dosage
7.
J Clin Invest ; 130(5): 2301-2318, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31971917

ABSTRACT

Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.


Subject(s)
Capillary Permeability/immunology , Microvessels/immunology , Neutrophil Activation , Neutrophils/immunology , Transendothelial and Transepithelial Migration/immunology , Animals , Capillary Permeability/genetics , Male , Mice , Mice, Transgenic , Microvessels/pathology , Neutrophils/pathology , Transendothelial and Transepithelial Migration/genetics
8.
Front Immunol ; 10: 2316, 2019.
Article in English | MEDLINE | ID: mdl-31636638

ABSTRACT

The glycocalyx is a dense layer of carbohydrate chains involved in numerous and fundamental biological processes, such as cellular and tissue homeostasis, inflammation and disease development. Composed of membrane-bound glycoproteins, sulfated proteoglycans and glycosaminoglycan side-chains, this structure is particularly essential for blood vascular barrier functions and leukocyte diapedesis. Interestingly, whilst the glycocalyx of blood vascular endothelium has been extensively studied, little is known about the composition and function of this glycan layer present on tissue-associated lymphatic vessels (LVs). Here, we applied confocal microscopy to characterize the composition of endothelial glycocalyx of initial lymphatic capillaries in murine cremaster muscles during homeostatic and inflamed conditions using an anti-heparan sulfate (HS) antibody and a panel of lectins recognizing different glycan moieties of the glycocalyx. Our data show the presence of HS, α-D-galactosyl moieties, α2,3-linked sialic acids and, to a lesser extent, N-Acetylglucosamine moieties. A similar expression profile was also observed for LVs of mouse and human skins. Interestingly, inflammation of mouse cremaster tissues or ear skin as induced by TNF-stimulation induced a rapid (within 16 h) remodeling of the LV glycocalyx, as observed by reduced expression of HS and galactosyl moieties, whilst levels of α2,3-linked sialic acids remains unchanged. Furthermore, whilst this response was associated with neutrophil recruitment from the blood circulation and their migration into tissue-associated LVs, specific neutrophil depletion did not impact LV glycocalyx remodeling. Mechanistically, treatment with a non-anticoagulant heparanase inhibitor suppressed LV HS degradation without impacting neutrophil migration into LVs. Interestingly however, inhibition of glycocalyx degradation reduced the capacity of initial LVs to drain interstitial fluid during acute inflammation. Collectively, our data suggest that rapid remodeling of endothelial glycocalyx of tissue-associated LVs supports drainage of fluid and macromolecules but has no role in regulating neutrophil trafficking out of inflamed tissues via initial LVs.


Subject(s)
Extracellular Fluid/physiology , Glucuronidase/physiology , Glycocalyx/metabolism , Inflammation/metabolism , Lymphatic Vessels/metabolism , Abdominal Muscles/metabolism , Animals , Drainage , Female , Heparitin Sulfate/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Neutrophils/physiology , Tumor Necrosis Factor-alpha/pharmacology
9.
J Pathol ; 248(1): 88-102, 2019 05.
Article in English | MEDLINE | ID: mdl-30632166

ABSTRACT

Ischemia/reperfusion (I/R) injury is a severe inflammatory insult associated with numerous pathologies, such as myocardial infarction, stroke and acute kidney injury. I/R injury is characterized by a rapid influx of activated neutrophils secreting toxic free radical species and degrading enzymes that can irreversibly damage the tissue, thus impairing organ functions. Significant efforts have been invested in identifying therapeutic targets to suppress neutrophil recruitment and activation post-I/R injury. In this context, pharmacological targeting of neutrophil elastase (NE) has shown promising anti-inflammatory efficacy in a number of experimental and clinical settings of I/R injury and is considered a plausible clinical strategy for organ care. However, the mechanisms of action of NE, and hence its inhibitors, in this process are not fully understood. Here we conducted a comprehensive analysis of the impact of NE genetic deletion on neutrophil infiltration in four murine models of I/R injury as induced in the heart, kidneys, intestine and cremaster muscle. In all models, neutrophil migration into ischemic regions was significantly suppressed in NE-/- mice as compared with wild-type controls. Analysis of inflamed cremaster muscle and mesenteric microvessels by intravital and confocal microscopy revealed a selective entrapment of neutrophils within venular walls, most notably at the level of the venular basement membrane (BM) following NE deletion/pharmacological blockade. This effect was associated with the suppression of NE-mediated remodeling of the low matrix protein expressing regions within the venular BM used by transmigrating neutrophils as exit portals. Furthermore, whilst NE deficiency led to reduced neutrophil activation and vascular leakage, levels of monocytes and prohealing M2 macrophages were reduced in tissues of NE-/- mice subjected to I/R. Collectively our results identify a vital and non-redundant role for NE in supporting neutrophil breaching of the venular BM post-I/R injury but also suggest a protective role for NE in promoting tissue repair. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Leukocyte Elastase/physiology , Neutrophils/physiology , Reperfusion Injury/enzymology , Transendothelial and Transepithelial Migration/physiology , Vascular Remodeling/physiology , Animals , Basement Membrane/enzymology , Basement Membrane/pathology , Basement Membrane/physiopathology , Disease Models, Animal , Gene Deletion , Kidney/blood supply , Kidney/pathology , Leukocyte Elastase/deficiency , Leukocyte Elastase/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Neutrophil Infiltration/physiology , Neutrophils/enzymology , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Venules/enzymology , Venules/pathology , Venules/physiopathology
10.
J Pathol ; 247(5): 662-671, 2019 04.
Article in English | MEDLINE | ID: mdl-30584795

ABSTRACT

Recent advances have provided evidence for the involvement of neutrophils in both innate and adaptive immunity, robustly challenging the old dogma that neutrophils are short-lived prototypical innate immune cells solely involved in acute responses to microbes and exerting collateral tissue damage. There is now ample evidence showing that neutrophils can migrate into different compartments of the lymphoid system where they contribute to the orchestration of the activation and/or suppression of lymphocyte effector functions in homeostasis and during chronic inflammation, such as autoimmune disorders and cancer. In support of this notion, neutrophils can generate a wide range of cytokines and other mediators capable of regulating the survival, proliferation and functions of both T and B cells. In addition, neutrophils can directly engage with lymphocytes and promote antigen presentation. Furthermore, there is emerging evidence of the existence of distinct and diverse neutrophil phenotypes with immunomodulatory functions that characterise different pathological conditions, including chronic and autoimmune inflammatory conditions. The aim of this review is to discuss the mechanisms implicated in neutrophil trafficking into the lymphoid system and to provide an overview of the immuno-regulatory functions of neutrophils in health and disease in the context of adaptive immunity. Copyright © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Lymph Nodes/physiology , Neoplasms/immunology , Neutrophils/physiology , Animals , Autoimmune Diseases/immunology , Disease Models, Animal , Humans , Phenotype
11.
Immunity ; 49(6): 1062-1076.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30446388

ABSTRACT

Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.


Subject(s)
Chemokine CXCL1 , Chemokine CXCL2 , Duffy Blood-Group System , Neutrophils , Receptors, Cell Surface , Transendothelial and Transepithelial Migration , Animals , Abdominal Muscles/drug effects , Abdominal Muscles/immunology , Abdominal Muscles/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Chemokine CXCL1/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/immunology , Chemokine CXCL2/metabolism , Duffy Blood-Group System/genetics , Duffy Blood-Group System/immunology , Duffy Blood-Group System/metabolism , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , Intercellular Junctions/drug effects , Intercellular Junctions/immunology , Intercellular Junctions/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/genetics , Transendothelial and Transepithelial Migration/immunology , Tumor Necrosis Factor-alpha/pharmacology
12.
Cell Metab ; 27(3): 588-601.e4, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29514067

ABSTRACT

Visceral adipose tissue (VAT) has multiple roles in orchestrating whole-body energy homeostasis. In addition, VAT is now considered an immune site harboring an array of innate and adaptive immune cells with a direct role in immune surveillance and host defense. We report that conventional dendritic cells (cDCs) in VAT acquire a tolerogenic phenotype through upregulation of pathways involved in adipocyte differentiation. While activation of the Wnt/ß-catenin pathway in cDC1 DCs induces IL-10 production, upregulation of the PPARγ pathway in cDC2 DCs directly suppresses their activation. Combined, they promote an anti-inflammatory milieu in vivo delaying the onset of obesity-induced chronic inflammation and insulin resistance. Under long-term over-nutrition, changes in adipocyte biology curtail ß-catenin and PPARγ activation, contributing to VAT inflammation.


Subject(s)
Adipocytes/metabolism , Dendritic Cells/metabolism , Homeostasis/immunology , Intra-Abdominal Fat/immunology , Obesity/metabolism , Animals , Cell Differentiation , Inflammation/immunology , Insulin Resistance/immunology , Interleukin-10/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , PPAR gamma/immunology , Wnt Signaling Pathway
13.
Sci Rep ; 7: 44189, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287124

ABSTRACT

Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.


Subject(s)
Abdominal Muscles/immunology , Cell Movement/immunology , Lymphatic Vessels/immunology , Myositis/immunology , Neutrophils/immunology , Tumor Necrosis Factor-alpha/immunology , Abdominal Muscles/pathology , Acute Disease , Animals , Cell Movement/genetics , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lymphatic Vessels/pathology , Mice , Mice, Knockout , Myositis/genetics , Myositis/pathology , Neutrophils/pathology , Tumor Necrosis Factor-alpha/genetics
14.
PLoS One ; 11(12): e0168643, 2016.
Article in English | MEDLINE | ID: mdl-27992592

ABSTRACT

The precise mechanisms by which Snake Venom Metalloproteinases (SVMPs) disrupt the microvasculature and cause haemorrhage have not been completely elucidated, and novel in vivo models are needed. In the present study, we compared the effects induced by BaP1, a PI SVMP isolated from Bothrops asper venom, and CsH1, a PIII SVMP from Crotalus simus venom, on cremaster muscle microvasculature by topical application of the toxins on isolated tissue (i.e., ex vivo model), and by intra-scrotal administration of the toxins (i.e., in vivo model). The whole tissue was fixed and immunostained to visualize the three components of blood vessels by confocal microscopy. In the ex vivo model, BaP1 was able to degrade type IV collagen and laminin from the BM of microvessels. Moreover, both SVMPs degraded type IV collagen from the BM in capillaries to a higher extent than in PCV and arterioles. CsH1 had a stronger effect on type IV collagen than BaP1. In the in vivo model, the effect of BaP1 on type IV collagen was widespread to the BM of arterioles and PCV. On the other hand, BaP1 was able to disrupt the endothelial barrier in PCV and to increase vascular permeability. Moreover, this toxin increased the size of gaps between pericytes in PCV and created new gaps between smooth muscle cells in arterioles in ex vivo conditions. These effects were not observed in the case of CsH1. In conclusion, our findings demonstrate that both SVMPs degrade type IV collagen from the BM in capillaries in vivo. Moreover, while the action of CsH1 is more directed to the BM of microvessels, the effects of BaP1 are widespread to other microvascular components. This study provides new insights in the mechanism of haemorrhage and other pathological effects induced by these toxins.


Subject(s)
Abdominal Muscles/blood supply , Hemorrhage/chemically induced , Metalloendopeptidases/administration & dosage , Microvessels/drug effects , Snake Venoms/enzymology , Abdominal Muscles/drug effects , Administration, Topical , Animals , Capillary Permeability , Collagen Type IV/drug effects , Collagen Type IV/ultrastructure , Disease Models, Animal , Male , Metalloendopeptidases/pharmacology , Mice , Microscopy, Confocal , Microvessels/ultrastructure
16.
Blood ; 127(7): 898-907, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26647392

ABSTRACT

Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense.


Subject(s)
Endotoxemia/chemically induced , Endotoxemia/metabolism , Gene Expression Regulation/drug effects , Intercellular Adhesion Molecule-1/biosynthesis , Lipopolysaccharides/toxicity , Neutrophils/metabolism , Animals , Disease Models, Animal , Endotoxemia/genetics , Endotoxemia/pathology , Intercellular Adhesion Molecule-1/genetics , Mice , Mice, Knockout , Neutrophils/pathology , Phagocytosis/drug effects , Phagocytosis/genetics , Reactive Oxygen Species/metabolism , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/genetics
17.
Mediators Inflamm ; 2015: 946509, 2015.
Article in English | MEDLINE | ID: mdl-26568666

ABSTRACT

Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.


Subject(s)
Leukocytes/physiology , Transendothelial and Transepithelial Migration/physiology , Animals , Cell Adhesion/physiology , Cell Adhesion Molecules/physiology , Humans , Inflammation/etiology , Inflammation/pathology , Inflammation/physiopathology , Intercellular Adhesion Molecule-1/physiology , Leukocytes/classification , Mice , Models, Biological , Vascular Cell Adhesion Molecule-1/physiology
18.
PLoS Negl Trop Dis ; 9(4): e0003731, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25909592

ABSTRACT

Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.


Subject(s)
Extracellular Matrix/metabolism , Hemorrhage/metabolism , Metalloendopeptidases/metabolism , Snake Venoms/enzymology , Animals , Hemorrhage/chemically induced , Hydrolysis , Immunohistochemistry , Mice , Proteolysis , Proteomics
19.
J Exp Med ; 211(7): 1307-14, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24913232

ABSTRACT

Microvascular plasma protein leakage is an essential component of the inflammatory response and serves an important function in local host defense and tissue repair. Mediators such as histamine and bradykinin act directly on venules to increase the permeability of endothelial cell (EC) junctions. Neutrophil chemoattractants also induce leakage, a response that is dependent on neutrophil adhesion to ECs, but the underlying mechanism has proved elusive. Through application of confocal intravital microscopy to the mouse cremaster muscle, we show that neutrophils responding to chemoattractants release TNF when in close proximity of EC junctions. In vitro, neutrophils adherent to ICAM-1 or ICAM-2 rapidly released TNF in response to LTB4, C5a, and KC. Further, in TNFR(-/-) mice, neutrophils accumulated normally in response to chemoattractants administered to the cremaster muscle or dorsal skin, but neutrophil-dependent plasma protein leakage was abolished. Similar results were obtained in chimeric mice deficient in leukocyte TNF. A locally injected TNF blocking antibody was also able to inhibit neutrophil-dependent plasma leakage, but had no effect on the response induced by bradykinin. The results suggest that TNF mediates neutrophil-dependent microvascular leakage. This mechanism may contribute to the effects of TNF inhibitors in inflammatory diseases and indicates possible applications in life-threatening acute edema.


Subject(s)
Capillary Permeability/immunology , Chemokine CXCL1/immunology , Complement C5a/immunology , Leukotriene B4/immunology , Neutrophils/immunology , Plasma , Tumor Necrosis Factor-alpha/immunology , Acute Disease , Animals , Antigens, CD , Capillary Permeability/genetics , Cell Adhesion/genetics , Cell Adhesion/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Chemokine CXCL1/genetics , Complement C5a/genetics , Edema/genetics , Edema/immunology , Edema/pathology , Endothelial Cells/immunology , Endothelial Cells/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Intercellular Junctions/genetics , Intercellular Junctions/immunology , Intercellular Junctions/pathology , Leukotriene B4/genetics , Mice , Mice, Knockout , Neutrophils/pathology , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/immunology , Tumor Necrosis Factor-alpha/genetics
20.
J Innate Immun ; 5(4): 336-47, 2013.
Article in English | MEDLINE | ID: mdl-23466407

ABSTRACT

Recruitment of neutrophils from the blood circulation to sites of infection or injury is a key innate immune response against invading pathogens and tissue injury. However, if inappropriately triggered, excessive and/or prolonged, this host defence response can also lead to severe pathological disorders. The migration of all leucocytes out of the vasculature is classically described by the leucocyte adhesion cascade that depicts a well-characterised sequence of cellular and molecular events within the vascular lumen. Recent findings have now illustrated that beyond the vascular lumen, the breaching of the venular wall can also involve an analogous cascade of adhesive events. For neutrophils this involves a tightly regulated and sequential series of responses within venular walls, initiating with adhesive steps that guide neutrophils through endothelial cells lining the venular wall, followed by responses that mediate and regulate their migration through the pericyte sheath and the venular basement membrane. The present review aims to provide a brief summary of novel additions to the classical adhesion cascade within the vascular lumen and then to discuss the emergence of a second adhesion cascade for neutrophils within venular walls, the latter illustrating the intricacies and complexities of neutrophil transmigration.


Subject(s)
Basement Membrane/metabolism , Leukocyte Rolling , Neutrophils/immunology , Transendothelial and Transepithelial Migration , Venules/metabolism , Animals , Cell Adhesion , Cell Movement , Humans , Immunity, Innate , Leukocyte Rolling/immunology , Transendothelial and Transepithelial Migration/immunology , Venules/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...