Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 4(7): 473-484, 2018 07.
Article in English | MEDLINE | ID: mdl-29892093

ABSTRACT

Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.


Subject(s)
Genome, Plant/genetics , Rosa/genetics , Centromere/genetics , Chromosomes, Plant/genetics , Flowers/anatomy & histology , Flowers/genetics , Fragaria/genetics , Genetic Variation/genetics , Haploidy , In Situ Hybridization, Fluorescence , Phylogeny , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Rosa/anatomy & histology , Sequence Analysis, DNA , Synteny/genetics
3.
Theor Appl Genet ; 128(11): 2177-87, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26152576

ABSTRACT

KEY MESSAGE: Combining biparental and multiparental connected population analyses was useful for the identification of 11 QTLs in two new genetic backgrounds of carrot resistance to Alternaria dauci and for breeding recommendations. Leaf blight due to the fungus Alternaria dauci is the major carrot foliar disease worldwide. Some resistance QTLs have been previously identified in one population, but the evaluation of additional genetic backgrounds with higher level of resistance would give opportunities for breeders to combine them by pyramiding. For this purpose, two segregating populations were evaluated twice across 4 years in the same environment (1) to compare the efficiency of the single vs. the connected populations approach for characterizing the new sources of carrot resistance to Alternaria dauci; (2) to evaluate the stability of QTLs over the years; and (3) to give recommendations to breeders for marker-assisted selection. Single and connected analyses were complementary; their combination allowed the detection of 11 QTLs. Connected analyses allowed the identification of common and specific QTLs among the two populations and the most favorable allele at each QTL. Important contrasts between allelic effects were observed with four and five most favorable alleles coming from the two resistant parental lines, whereas two other favorable alleles came from the susceptible parental line. While four QTLs were consistent across years, seven were detected within a single year. The heritabilities for both populations PC2 and PC3 were high (75 and 78%, respectively), suggesting that the resistance of carrot to A. dauci was little affected by these environmental conditions, but the instability of QTL over years may be due to changing environmental conditions. The complementarity between these parental lines in terms of interesting allelic combinations is also discussed.


Subject(s)
Daucus carota/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Alternaria/pathogenicity , Chromosome Mapping , DNA, Plant/genetics , Daucus carota/microbiology , Genetics, Population , Genotype , Phenotype , Plant Breeding , Plant Diseases/microbiology
4.
Plant Cell Rep ; 31(11): 2015-29, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22898902

ABSTRACT

KEY MESSAGE : We reported the cloning of a rose DELLA gene. We obtained transgenic Pelargonium lines overexpressing this gene which presented several phenotypes in plant growth, root growth, flowering time and number of inflorescences. Control of development is an important issue for production of ornamental plant. The plant growth regulator, gibberellins (GAs), plays a pivotal role in regulating plant growth and development. DELLA proteins are nuclear negative regulator of GA signalling. Our objective was to study the role of GA in the plant architecture and in the blooming of ornamentals. We cloned a rose DELLA homologous gene, RoDELLA, and studied its function by genetic transformation of pelargonium. Several transgenic pelargonium (Pelargonium × domesticum 'Autum Haze') lines were produced that ectopically expressed RoDELLA under the control of the 35S promoter. These transgenic plants exhibited a range of phenotypes which could be related to the reduction in GA response. Most of transgenic plants showed reduced growth associated to an increase of the node and branch number. Moreover, overexpression of RoDELLA blocked or delayed flowering in transgenic pelargonium and exhibited defects in the root formation. We demonstrated that pelargonium could be used to validate ornamental gene as the rose DELLA gene. RoDELLA overexpression modified many aspects of plant developmental pathways, as the plant growth, the transition of vegetative to floral stage and the ability of rooting.


Subject(s)
Gibberellins/metabolism , Pelargonium/growth & development , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Rosa/genetics , Amino Acid Sequence , Flowers/genetics , Gene Expression Regulation, Plant , Inflorescence/genetics , Inflorescence/growth & development , Inflorescence/metabolism , Molecular Sequence Data , Pelargonium/genetics , Pelargonium/physiology , Pelargonium/ultrastructure , Phenotype , Phylogeny , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Plants, Genetically Modified , Sequence Alignment , Signal Transduction/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...