Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36838741

ABSTRACT

Developing highly efficient semiconductor metal oxide (SMOX) sensors capable of accurate and fast responses to environmental humidity is still a challenging task. In addition to a not so pronounced sensitivity to relative humidity change, most of the SMOXs cannot meet the criteria of real-time humidity sensing due to their long response/recovery time. The way to tackle this problem is to control adsorption/desorption processes, i.e., water-vapor molecular dynamics, over the sensor's active layer through the powder and pore morphology design. With this in mind, a KIT-5-mediated synthesis was used to achieve mesoporous tin (IV) oxide replica (SnO2-R) with controlled pore size and ordering through template inversion and compared with a sol-gel synthesized powder (SnO2-SG). Unlike SnO2-SG, SnO2-R possessed a high specific surface area and quite an open pore structure, similar to the KIT-5, as observed by TEM, BET and SWAXS analyses. According to TEM, SnO2-R consisted of fine-grained globular particles and some percent of exaggerated, grown twinned crystals. The distinctive morphology of the SnO2-R-based sensor, with its specific pore structure and an increased number of oxygen-related defects associated with the powder preparation process and detected at the sensor surface by XPS analysis, contributed to excellent humidity sensing performances at room temperature, comprised of a low hysteresis error (3.7%), sensitivity of 406.8 kΩ/RH% and swift response/recovery speed (4 s/6 s).


Subject(s)
Oxides , Humidity , Powders , Oxides/chemistry
2.
Microsc Res Tech ; 85(4): 1557-1567, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34888993

ABSTRACT

In the present work, a biomaterial (SBA-16/HA) based on the growth of hydroxyapatite (HA) particles within an organized silica structure SBA-16 (Santa Barbara Amorphous-16) was developed to evaluate its application to act as a porous microenvironment promoting attachment and viability of human dental pulp stem cells of healthy deciduous teeth (SHED). First, SHED were isolated and their phenotypes were evaluated by flow cytometry. The samples of SBA-16/HA were characterized by X-ray diffraction (XRD), small and wide angle X-ray scattering (SWAXS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive spectra detector (EDS). Afterward, cells were cultured in the eluates of the above-mentioned biomaterial aged for 24 hr, 7. and 14 days. Bio-Oss® and dentin particles are involved for comparison and cells are cultured in the eluates of these two materials also. Thiazolyl Blue Tetrazolium bromide assay-MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay) was used for the determination of cell viability. The results obtained by all aforementioned characterization methods of SBA-16/HA, revealed a uniform spherical mesoporous structure, an intrinsic characteristic of this material. This material displayed excellent biocompatibility on SHEDs, and even proliferative potential, indicating that SBA-16/HA could potentially serve as a suitable substrate for bone regeneration. Contrary to SBA-16/HA, dentin particles showed low cytotoxicity at all time points, compared to control and Bio-Oss®groups. Our results substantiate the idea that SBA-16/HA has a beneficial effect on SHEDs, thus paving the way toward developing new material for bone replacement.


Subject(s)
Durapatite , Nanocomposites , Aged , Dental Pulp , Dentin/chemistry , Durapatite/chemistry , Humans , Silicon Dioxide/analysis , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Stem Cells , X-Ray Diffraction
3.
Acta Chim Slov ; 61(3): 530-41, 2014.
Article in English | MEDLINE | ID: mdl-25286208

ABSTRACT

In this study, we report on the acid-catalysed synthesis of La(9.33)Si(6)O(26) from lanthanum nitrate or acetate and silicon ethoxide (TEOS) in the ethanol solvent, upon the transition from liquid to amorphous and crystalline phases. The similarity of the Fourier transform infrared spectra of the lanthanum-salt solutions and lanthanum-silicon sols indicates that the lanthanum environment is not changed in the reaction of the La-salt with TEOS. In the nitric-acid catalysed synthesis, the hydrolysis reaction was almost instantaneous, as a consequence of a higher amount of water in this system, which contributed to a high level of chemical heterogeneity in the product. The acetic acid-based synthesis ensured a good mixing of the reagents at the nanometre level, which gave rise to the formation of the pure La(9.33)Si(6)O(26) powder upon heating at 900 °C, and single phase ceramics with 94 % relative density after sintering at 1400 °C for 3 h in air, which is 200 °C lower temperature then usually reported for the apatite material.

SELECTION OF CITATIONS
SEARCH DETAIL
...