Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Funct Genomics ; 16(2): 67-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854603

ABSTRACT

Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.


Subject(s)
Cell-Free System , Protein Biosynthesis/genetics , Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Eukaryota/genetics , Gene Expression , Genetic Vectors , Germ Cells , Proteins/isolation & purification , Triticum/genetics
2.
J Struct Funct Genomics ; 10(2): 165-79, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19130299

ABSTRACT

The Center for Eukaryotic Structural Genomics (CESG) is a "specialized" or "technology development" center supported by the Protein Structure Initiative (PSI). CESG's mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from Galdieria sulphuraria, 35 from Arabidopsis thaliana, 96 from Cyanidioschyzon merolae, 80 from Plasmodium falciparum, 24 from yeast, and about 25 from other eukaryotes. Notably, 30% of all structures of human proteins solved by the PSI Centers were determined at CESG. Whereas eukaryotic proteins generally are considered to be much more challenging targets than prokaryotic proteins, the technology now in place at CESG yields success rates that are comparable to those of the large production centers that work primarily on prokaryotic proteins. We describe here the technological innovations that underlie CESG's platforms for bioinformatics and laboratory information management, target selection, protein production, and structure determination by X-ray crystallography or NMR spectroscopy.


Subject(s)
Genomics/organization & administration , Proteins/chemistry , Animals , Crystallography, X-Ray , Genomics/methods , Humans , Multi-Institutional Systems/organization & administration , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteins/genetics , Proteomics/organization & administration
3.
Proteins ; 73(1): 241-53, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18433060

ABSTRACT

The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (R(free) = 24.9%) at 3.3 A. The protein adopts the alpha/beta fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys(150)) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg(156)) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P(12-13)) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Catalytic Domain , Cloning, Molecular , Humans , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Phosphoric Monoester Hydrolases/genetics , Sequence Alignment , Substrate Specificity
4.
J Struct Funct Genomics ; 6(2-3): 143-7, 2005.
Article in English | MEDLINE | ID: mdl-16211511

ABSTRACT

The Center for Eukaryotic Structural Genomics (CESG) has established procedures for the purification of Arabidopsis proteins in a high-throughput mode. Recombinant proteins were fused with (His)(6)-MBP tags at their N-terminus and expressed in Escherichia coli. Using an automated AKTApurifier system, fusion proteins were initially purified by immobilized metal affinity chromatography (IMAC). After cleavage of (His)(6)-MBP tags by TEV protease, (His)(6)-MBP tags were separated from target proteins by a subtractive 2nd IMAC. As a part of quality assurance, all purified proteins were subjected to MALDI-TOF and ESI mass spectrometry to confirm target identity and integrity, and determine incorporation of seleno-methionine (SeMet) and (15)N and (13)C isotopes. The protocols have been used successfully to provide high quality proteins that are suitable for structural studies by X-ray crystallography and NMR.


Subject(s)
Arabidopsis Proteins/isolation & purification , Arabidopsis/genetics , Proteomics/methods , Recombinant Proteins/isolation & purification , Carbon Isotopes/metabolism , Chromatography, Affinity , Escherichia coli , Nitrogen Isotopes/metabolism , Quality Control , Recombinant Proteins/metabolism , Selenomethionine/metabolism , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Proteins ; 59(3): 633-43, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15789406

ABSTRACT

We describe a comparative study of protein production from 96 Arabidopsis thaliana open reading frames (ORFs) by cell-based and cell-free protocols. Each target was carried through four pipeline protocols used by the Center for Eukaryotic Structural Genomics (CESG), one for the production of unlabeled protein to be used in crystallization trials and three for the production of 15N-labeled proteins to be analyzed by 1H-15N NMR correlation spectroscopy. Two of the protocols involved Escherichia coli cell-based and two involved wheat germ cell-free technology. The progress of each target through each of the protocols was followed with all failures and successes noted. Failures were of the following types: ORF not cloned, protein not expressed, low protein yield, no cleavage of fusion protein, insoluble protein, protein not purified, NMR sample too dilute. Those targets that reached the goal of analysis by 1H-15N NMR correlation spectroscopy were scored as HSQC+ (protein folded and suitable for NMR structural analysis), HSQC+/- (protein partially disordered or not in a single stable conformational state), HSQC- (protein unfolded, misfolded, or aggregated and thus unsuitable for NMR structural analysis). Targets were also scored as X- for failing to crystallize and X+ for successful crystallization. The results constitute a rich database for understanding differences between targets and protocols. In general, the wheat germ cell-free platform offers the advantage of greater genome coverage for NMR-based structural proteomics whereas the E. coli platform when successful yields more protein, as currently needed for crystallization trials for X-ray structure determination.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genome, Plant , Arabidopsis Proteins/isolation & purification , Cell-Free System , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Magnetic Resonance Spectroscopy , Seeds/genetics , Triticum/genetics
6.
Protein Expr Purif ; 40(2): 256-67, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15766867

ABSTRACT

Protocols have been developed and applied in the high-throughput production of selenomethionine labeled fusion proteins using the conditional Met auxotroph Escherichia coli B834. The large-scale growth and expression uses a chemically defined auto-induction medium containing 125 mg L(-1) selenomethionine, salts and trace metals, other amino acids including 10 mg L(-1) of methionine, vitamins except vitamin B12, and glucose, glycerol, and alpha-lactose. A schematic for a shaker rack that can hold up to twenty-four 2-L polyethylene terephthalate beverage bottles in a standard laboratory refrigerated floor shaker is provided. The growth cycle from inoculation of the culture bottle through the growth, induction, and expression was timed to take approximately 24 h. Culture growth in the auto-induction medium gave an average final optical density at 600 nm of approximately 6 and an average wet cell mass yield of approximately 14 g from 2 L of culture in greater than 150 expression trials. A simple method for visual scoring of denaturing electrophoresis gels for total protein expression, solubility, and effectiveness of fusion protein proteolysis was developed and applied. For the favorably scored expression trials, the average yield of purified, selenomethionine-labeled target protein obtained after proteolysis of the fusion protein was approximately 30 mg. Analysis by mass spectrometry showed greater than 90% incorporation of selenomethionine over a approximately 8-fold range of selenomethionine concentrations in the growth medium, with higher growth rates observed at the lower selenomethionine concentrations. These protein preparations have been utilized to solve X-ray crystal structures by multiwavelength anomalous diffraction phasing.


Subject(s)
Proteins , Selenomethionine , Staining and Labeling/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cloning, Molecular/methods , Culture Media , Escherichia coli/genetics , Escherichia coli/growth & development , Methods , Temperature
7.
Article in English | MEDLINE | ID: mdl-16511070

ABSTRACT

The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (Rfree = 24.1%) at 2.4 A resolution. The crystal structure includes two monomers in the asymmetric unit that differ in the conformation of a flexible domain that spans residues 178-230. The crystal structure confirmed that At3g21360 encodes a protein belonging to the clavaminate synthase-like superfamily of iron(II) and 2-oxoglutarate-dependent enzymes. The metal-binding site was defined and is similar to the iron(II) binding sites found in other members of the superfamily.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Iron/metabolism , Ketoglutaric Acids/metabolism , Protein Tyrosine Phosphatases/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Binding Sites , Crystallization , Crystallography, X-Ray , Dual-Specificity Phosphatases , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Models, Molecular , Protein Tyrosine Phosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...