Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927712

ABSTRACT

5S ribosomal DNAs (rDNAs) are arranged in tandem and are often under-represented in genome assemblies. In the present study, we performed a global and in-depth analysis of the 5S rDNAs in the model insect Tribolium castaneum and its closely related species Tribolium freemani. To accomplish this goal, we used our recently published genome assemblies based on Nanopore and PacBio long-read sequencing. Although these closely related species share the 5S rRNA gene sequence with high homology, they show a different organization of the 5S rDNA locus. Analysis of 5S rDNA arrays in T. castaneum revealed a typical tandemly repeated organization characterized by repeat units consisting of the 121 bp long 5S rRNA gene and the 71 bp long nontranscribed spacer (NTS). In contrast, T. freemani showed a much more complex organization of 5S rDNA arrays characterized by two patterns. The first is based on the association of 5S rRNA gene with arrays of a satellite DNA, representing the NTS sequence of the 5S rDNA genes in T. freemani. The second, more complex type is characterized by a somewhat less frequent occurrence of the 5S rRNA gene and its association with longer satellite DNA arrays that are regularly interrupted by Jockey-like retrotransposons. This organization, in which the ribosomal gene is associated with two completely different repetitive elements such as satellite DNAs and retrotransposons, suggests that the 5S rRNA gene, regardless of its crucial function in the genome, could be a subject of extremely dynamic genomic rearrangements.


Subject(s)
Genome, Insect , RNA, Ribosomal, 5S , Tribolium , Animals , Tribolium/genetics , RNA, Ribosomal, 5S/genetics
2.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628404

ABSTRACT

Adhesion between cells and the extracellular matrix (ECM) is one of the prerequisites for multicellularity, motility, and tissue specialization. Focal adhesions (FAs) are defined as protein complexes that mediate signals from the ECM to major components of the cytoskeleton (microtubules, actin, and intermediate filaments), and their mutual communication determines a variety of cellular processes. In this study, human cytoskeletal crosstalk proteins were identified by comparing datasets with experimentally determined cytoskeletal proteins. The spectraplakin dystonin was the only protein found in all datasets. Other proteins (FAK, RAC1, septin 9, MISP, and ezrin) were detected at the intersections of FAs, microtubules, and actin cytoskeleton. Homology searches for human crosstalk proteins as queries were performed against a predefined dataset of proteomes. This analysis highlighted the importance of FA communication with the actin and microtubule cytoskeleton, as these crosstalk proteins exhibit the highest degree of evolutionary conservation. Finally, phylogenetic analyses elucidated the early evolutionary history of spectraplakins and cortical microtubule stabilization complexes (CMSCs) as model representatives of the human cytoskeletal crosstalk. While spectraplakins probably arose at the onset of opisthokont evolution, the crosstalk between FAs and microtubules is associated with the emergence of metazoans. The multiprotein complexes contributing to cytoskeletal crosstalk in animals gradually gained in complexity from the onset of metazoan evolution.


Subject(s)
Actins , Cytoskeleton , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cytoskeleton/metabolism , Microtubules/metabolism , Phylogeny
3.
Epigenetics Chromatin ; 14(1): 47, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663449

ABSTRACT

BACKGROUND: Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS: We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS: Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.


Subject(s)
DNA, Satellite , Epigenesis, Genetic , Animals , Cell Line , DNA, Satellite/genetics , Fetal Development , Histones/genetics , Histones/metabolism , Humans , Mice
4.
Sci Rep ; 10(1): 15107, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934255

ABSTRACT

Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.


Subject(s)
Crassostrea/genetics , DNA Transposable Elements/genetics , DNA, Satellite/analysis , Genome, Insect , Interspersed Repetitive Sequences , Animals , DNA, Satellite/genetics , Phylogeny
5.
Genes (Basel) ; 11(6)2020 06 24.
Article in English | MEDLINE | ID: mdl-32599860

ABSTRACT

Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.


Subject(s)
Centromere/genetics , Chromatin/genetics , Heterochromatin/genetics , Ostreidae/genetics , Animals , Chromatin Immunoprecipitation , DNA Transposable Elements/genetics , Genome/genetics , Histones/genetics , Pacific Ocean
6.
BMC Genomics ; 17(1): 997, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27919246

ABSTRACT

BACKGROUND: Satellite DNA (satDNA) sequences are typically arranged as arrays of tandemly repeated monomers. Due to the similarity among monomers, their organizational pattern and abundance, satDNAs are hardly accessible to structural and functional studies and still represent the most obscure genome component. Although many satDNA arrays of diverse length and even single monomers exist in the genome, surprisingly little is known about transition from satDNAs to other sequences. Studying satDNA monomers at junctions and identifying DNA sequences adjacent to them can help to understand the processes that (re)distribute satDNAs and significance that evolution of these sequence elements might have in creating the genomic landscape. RESULTS: We explored sets of randomly selected satDNA-harboring genomic fragments in four mollusc species to examine satDNA transition sites, and the nature of adjacent sequences. All examined junctions are characterized by abrupt transitions from satDNAs to other sequences. Among them, junctions of only one examined satDNA mapped non-randomly (within the palindrome), indicating that well-defined sequence feature is not a necessary prerequisite in the junction formation. In the studied sample, satDNA flanking sequences can be roughly classified into two groups. The first group is composed of anonymous DNA sequences which occasionally include short segments of transposable elements (TEs) as well as segments of other satDNA sequences. In the second group, satDNA repeats and the array flanking sequences are identified as parts of TEs of the Helitron superfamily. There, some array flanking regions hold fragmented satDNA monomers alternating with anonymous sequences of comparable length as missing monomer parts, suggesting a process of sequence reorganization by a mechanism able to excise short monomer parts and replace them with unrelated sequences. CONCLUSIONS: The observed architecture of satDNA transition sites can be explained as a result of insertion and/or recombination events involving short arrays of satDNA monomers and TEs, in combination with hypothetical transposition-related ability of satDNA monomers to be shuffled independently in the genome. We conclude that satDNAs and TEs can form a complex network of sequences which essentially share the propagation mechanisms and in synergy shape the genome.


Subject(s)
DNA Transposable Elements , DNA, Satellite , Genomics , Animals , Bivalvia/classification , Bivalvia/genetics , Computational Biology/methods , Genome , Genomics/methods , Phylogeny
7.
PLoS One ; 11(8): e0161741, 2016.
Article in English | MEDLINE | ID: mdl-27560164

ABSTRACT

The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.


Subject(s)
Centromere/genetics , Dekkera/genetics , Genes, Fungal , Genetic Loci , Genomic Instability , Beer/microbiology , Biofilms , Conserved Sequence , Dekkera/physiology , Homologous Recombination , Ploidies , Wine/microbiology
8.
Chromosome Res ; 23(3): 583-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26293606

ABSTRACT

Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.


Subject(s)
DNA Transposable Elements , DNA, Satellite , Retroelements , Animals , Eukaryota/genetics , Gene Expression Regulation , Genome , Genomics , Heterochromatin/genetics , Humans , Nucleic Acid Conformation , Repetitive Sequences, Nucleic Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...