Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
FASEB J ; 35(7): e21668, 2021 07.
Article in English | MEDLINE | ID: mdl-34114695

ABSTRACT

The Hippo pathway is an evolutionarily conserved kinase cascade involved in the control of tissue homeostasis, cellular differentiation, proliferation, and organ size, and is regulated by cell-cell contact, apical cell polarity, and mechanical signals. Miss-regulation of this pathway can lead to cancer. The Hippo pathway acts through the inhibition of the transcriptional coactivators YAP and TAZ through phosphorylation. Among the various signaling mechanisms controlling the hippo pathway, activation of G12/13 by G protein-coupled receptors (GPCR) recently emerged. Here we show that a GPCR, the ghrelin receptor, that activates several types of G proteins, including G12/13, Gi/o, and Gq, can activate YAP through Gq/11 exclusively, independently of G12/13. We revealed that a strong basal YAP activation results from the high constitutive activity of this receptor, which can be further increased upon agonist activation. Thus, acting on ghrelin receptor allowed to modulate up-and-down YAP activity, as activating the receptor increased YAP activity and blocking constitutive activity reduced YAP activity. Our results demonstrate that GPCRs can be used as molecular switches to finely up- or down-regulate YAP activity through a pure Gq pathway.


Subject(s)
Activating Transcription Factor 6/metabolism , Cell Cycle Proteins/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Regulation , Protein Serine-Threonine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Transcription Factors/metabolism , Activating Transcription Factor 6/genetics , Cell Cycle Proteins/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , HEK293 Cells , Hippo Signaling Pathway , Humans , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Receptors, G-Protein-Coupled/genetics , Transcription Factors/genetics
2.
Mol Pharmacol ; 96(2): 233-246, 2019 08.
Article in English | MEDLINE | ID: mdl-31189666

ABSTRACT

The orphan G-protein-coupled receptor (GPCR) GPR158 is expressed in the brain, where it is involved in the osteocalcin effect on cognitive processes, and at the periphery, where it may contribute to glaucoma and cancers. GPR158 forms a complex with RGS7-ß5, leading to the regulation of neighboring GPCR-induced Go protein activity. GPR158 also interacts with αo, although no canonical Go coupling has been reported. GPR158 displays three VCPWE motifs in its C-terminal domain that are putatively involved in G-protein regulation. Here, we addressed the scaffolding function of GPR158 and its VCPWE motifs on Go. We observed that GPR158 interacted with and stabilized the amount of RGS7-ß5 through a 50-residue region downstream of its transmembrane domain and upstream of the VCPWE motifs. We show that two VCPWE motifs are involved in αo binding. Using a Gαo-ßγ bioluminescence resonance energy transfer (BRET) sensor, we found that GPR158 decreases the BRET signal as observed upon G-protein activation; however, no constitutive activity of GPR158 could be detected through the measurement of various G-protein-mediated downstream responses. We propose that the effect of GPR158 on Go is unlikely due to a canonical activation of Go, but rather to the trapping of Gαo by the VCPWE motifs, possibly leading to its dissociation from ßγ Such action of GPR158 is expected to prolong the ßγ activity, as also observed with some activators of G-protein signaling. Taken together, our data revealed a complex functional scaffolding or signaling role for GPR158 controlling Go through an original mechanism.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Amino Acid Motifs , Binding Sites , Bioluminescence Resonance Energy Transfer Techniques , Gene Expression Regulation , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Protein Binding , Receptors, G-Protein-Coupled/genetics
3.
Methods Mol Biol ; 1893: 153-166, 2019.
Article in English | MEDLINE | ID: mdl-30565133

ABSTRACT

The YAP protein is a co-transcription factor increasing the expression of genes involved in cell proliferation and repressing the expression of genes important for cell differentiation and apoptosis. It is regulated by several inputs, like the Hippo pathway, through the action of kinases that phosphorylate YAP on several residues. The level of phosphorylation of the residues serine 127 (S127) of YAP is generally assessed in cellular models, native tissues, and organs, as a marker of YAP activity and location, and is regulated by numerous partners. This phosphorylation event is classically detected using a western blot technical approach. Here, we describe a novel approach to detect both the relative amount of total YAP (T-YAP assay) and the phosphorylation of the residue S127 of YAP (S127-P-YAP assay) using a HTRF®-based method. This easy-to-run method can easily be miniaturized and allows for a high-throughput analysis in 96/384-well plate format, requiring less cellular material and being more rapid than other approaches.


Subject(s)
Biological Assay , Nuclear Proteins/metabolism , Serine/metabolism , Transcription Factors/metabolism , Biological Assay/methods , Biological Assay/standards , Cell Cycle Proteins , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Transport , Sensitivity and Specificity , Signal Transduction
4.
Invest Ophthalmol Vis Sci ; 54(13): 8041-50, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24222301

ABSTRACT

PURPOSE: Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations. METHODS: RNA in situ hybridization was performed with mouse retinal sections. A commercially available antibody was validated with GPR179-overexpressing COS-1 cells and applied to human retinal sections. Live-cell extracellular staining along with subsequent intracellular immunolocalization and ELISA studies were performed using mammalian cells overexpressing wild-type or missense mutated GPR179. Wild-type and splice site-mutated mini-gene constructs were transiently transfected, and RNA was extracted. RT-PCR-amplified products were cloned, and Sanger sequenced. RESULTS: Mouse Gpr179 transcript was expressed in the upper part of the inner nuclear layer, and the respective human protein localized at the dendritic tips of bipolar cells in human retina. The missense mutations p.Tyr220Cys, p.Gly455Asp, and p.His603Tyr led to severely reduced cell surface localization, whereas p.Asp126His did not. The mutated splice donor site altered GPR179 splicing. CONCLUSIONS: Our findings indicate that the site of expression and protein localization of human and mouse GPR179 is similar to that of other proteins implicated in cCSNB. For most of the mutations identified so far, loss of the GPR179 protein function seems to be the underlying pathogenic mechanism leading to this form of cCSNB.


Subject(s)
Eye Diseases, Hereditary/genetics , Gene Expression Regulation , Genetic Diseases, X-Linked/genetics , Myopia/genetics , Night Blindness/genetics , RNA/genetics , Receptors, G-Protein-Coupled/genetics , Retinal Bipolar Cells/pathology , Animals , Disease Models, Animal , Electroretinography , Enzyme-Linked Immunosorbent Assay , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/metabolism , Female , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/metabolism , Humans , In Situ Hybridization , Mice , Mice, Inbred C57BL , Myopia/diagnosis , Myopia/metabolism , Night Blindness/diagnosis , Night Blindness/metabolism , Polymerase Chain Reaction , Receptors, G-Protein-Coupled/biosynthesis , Retinal Bipolar Cells/metabolism
5.
EMBO J ; 30(1): 32-42, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21063387

ABSTRACT

Seven-transmembrane domain (7TM) receptors have important functions in cell-cell communication and can assemble into dimers or oligomers. Such complexes may allow specific functional cross-talk through trans-activation of interacting 7TMs, but this hypothesis requires further validation. Herein, we used the GABAB receptor, which is composed of two distinct subunits, GABAB1, which binds the agonist, and GABAB2, which activates G proteins, as a model system. By using a novel orthogonal-labelling approach compatible with time-resolved FRET and based on ACP- and SNAP-tag technologies to verify the heterodimerization of wild-type and mutated GABAB subunits, we demonstrate the existence of a direct allosteric coupling between the 7TMs of GABAB heterodimers. Indeed, a GABAB receptor, in which the GABAB2 extracellular domain was deleted, was still capable of activating G proteins. Furthermore, synthetic ligands for the GABAB2 7TM could increase agonist affinity at the GABAB1 subunit in this mutated receptor. In addition to bringing new information on GABAB receptor activation, these data clearly demonstrate the existence of direct trans-activation between the 7TM of two interacting proteins.


Subject(s)
Receptors, GABA-B/chemistry , Receptors, GABA-B/metabolism , Allosteric Regulation , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Humans , Mutation , Protein Multimerization , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Receptors, GABA-B/genetics , Transfection
6.
EMBO J ; 28(15): 2195-208, 2009 Aug 05.
Article in English | MEDLINE | ID: mdl-19590495

ABSTRACT

G protein-coupled receptors (GPCRs) have critical functions in intercellular communication. Although a wide range of different receptors have been identified in the same cells, the mechanism by which signals are integrated remains elusive. The ability of GPCRs to form dimers or larger hetero-oligomers is thought to generate such signal integration. We examined the molecular mechanisms responsible for the GABA(B) receptor-mediated potentiation of the mGlu receptor signalling reported in Purkinje neurons. We showed that this effect does not require a physical interaction between both receptors. Instead, it is the result of a more general mechanism in which the betagamma subunits produced by the Gi-coupled GABA(B) receptor enhance the mGlu-mediated Gq response. Most importantly, this mechanism could be generally applied to other pairs of Gi- and Gq-coupled receptors and the signal integration varied depending on the time delay between activation of each receptor. Such a mechanism helps explain specific properties of cells expressing two different Gi- and Gq-coupled receptors activated by a single transmitter, or properties of GPCRs naturally coupled to both types of the G protein.


Subject(s)
Purkinje Cells/physiology , Receptors, GABA-B/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction , Animals , Mice , Mice, Inbred C57BL , Models, Biological
7.
J Biol Chem ; 282(16): 12154-63, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17310064

ABSTRACT

G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.


Subject(s)
Receptors, G-Protein-Coupled/physiology , Amino Acid Motifs , Amino Acid Sequence , Arginine/chemistry , Cell Line , Cell Membrane/metabolism , Cytoplasm/metabolism , Humans , Inositol Phosphates/chemistry , Lysine/chemistry , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Receptors, GABA-B/metabolism , Rhodopsin/chemistry
8.
J Biol Chem ; 281(34): 24653-61, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16787923

ABSTRACT

Many membrane receptors are made of a ligand binding domain and an effector domain mediating intracellular signaling. This is the case for the metabotropic glutamate-like G-protein-coupled receptors. How ligand binding leads to the active conformation of the effector domain in such receptors is largely unknown. Here, we used an evolutionary trace analysis and mutagenesis to identify critical residues involved in the allosteric coupling between the Venus flytrap ligand binding domain (VFT) and the heptahelical G-protein activating domain of the metabotropic glutamate-like receptors. We have shown that a conserved interdomain disulfide bridge is required for this allosteric interaction. Taking into account that these receptors are homodimers, this finding provides important new information explaining how the different conformations of the dimer of VFT lead to different signaling of such dimeric receptors.


Subject(s)
Models, Molecular , Receptors, Metabotropic Glutamate/chemistry , Animals , Binding Sites , Evolution, Molecular , Humans , Ligands , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism
9.
Neuropharmacology ; 50(2): 245-53, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16310227

ABSTRACT

Under pathophysiological conditions, cellular amino acids can be profusely released from cells into the cerebral interstitial space. Because several class-C G protein coupled receptors (GPCRs) display a broad natural ligand spectrum, being sensitive to more than one endogenous ligand, we wondered whether the related metabotropic glutamate (mGlu) receptors could be modulated by various types of L-amino acids, allowing them to sense large increase in extracellular amino acid concentration. Here, the agonist, antagonist and allosteric effects of the twenty classical L-amino acids were evaluated on the eight mGlu receptor subtypes. We show that, in addition to glutamate (Glu), cysteine, aspartate and asparagine also lead to the activation of mGlu3, 4 and 5. Interestingly, our data demonstrate that the effect of these three amino acids did not result from a direct activation of the receptors, but from an indirect action involving Glu-transporters/exchangers. These data first demonstrate that mGlu receptors, unlike other class-C GPCRs, display an extremely high selectivity towards one ligand. Moreover, our results also show that Glu transport systems allow mGlu receptors to sense large increase in the extracellular concentration of some amino acids. Such a system will certainly lead to a large increase in some mGlu receptor activity under pathological conditions, such as seizure, ischemia or other brain injuries.


Subject(s)
Amino Acids/pharmacology , Excitatory Amino Acid Agonists , Glutamates/pharmacology , Receptors, Metabotropic Glutamate/agonists , Amino Acid Transport System X-AG/metabolism , Calcium/metabolism , Cell Line , Dose-Response Relationship, Drug , Excitatory Amino Acid Transporter 3/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Inositol Phosphates/metabolism , Ligands , Receptors, Metabotropic Glutamate/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transfection
10.
EMBO J ; 24(3): 499-509, 2005 Feb 09.
Article in English | MEDLINE | ID: mdl-15660124

ABSTRACT

G-protein-coupled receptors (GPCRs) have been shown to form dimers, but the relevance of this phenomenon in G-protein activation is not known. Among the large GPCR family, metabotropic glutamate (mGlu) receptors are constitutive dimers. Here we examined whether both heptahelical domains (HDs) are turned on upon full receptor activation. To that aim, we measured G-protein coupling efficacy of dimeric mGlu receptors in which one subunit bears specific mutations. We show that a mutation in the third intracellular loop (i3 loop) known to prevent G-protein activation in a single subunit decreases coupling efficacy. However, when a single HD is blocked in its inactive state using an inverse agonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), no decrease in receptor activity is observed. Interestingly, in a receptor dimer in which the subunit that binds MPEP is mutated in its i3 loop, MPEP enhances agonist-induced activity, reflecting a 'better' activation of the adjacent HD. These data are consistent with a model in which a single HD is turned on upon activation of such homodimeric receptors and raise important issues in deciphering the functional role of GPCR dimer formation for G-protein activation.


Subject(s)
Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Cell Line , Dimerization , Excitatory Amino Acid Antagonists/pharmacology , Humans , In Vitro Techniques , Kinetics , Models, Biological , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Protein Subunits , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/genetics , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection
11.
Proc Natl Acad Sci U S A ; 101(1): 378-83, 2004 Jan 06.
Article in English | MEDLINE | ID: mdl-14691258

ABSTRACT

Although agonists bind directly in the heptahelical domain (HD) of most class-I rhodopsin-like G protein coupled receptors (GPCRs), class-III agonists bind in the extracellular domain of their receptors. Indeed, the latter possess a large extracellular domain composed of a cysteine-rich domain and a Venus flytrap module. Both the low sequence homology and the structural organization of class-III GPCRs raised the question of whether or not the HD of these receptors functions the same way as rhodopsin-like GPCRs. Here, we show that the HD of metabotropic glutamate receptor 5 (mGlu(5)) displays the same agonist-independent constitutive activity as the wild-type receptor. Moreover, we show that the noncompetitive antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine hydrochloride] and the positive allosteric modulator DFB (3,3'-difluorobenzaldazine) act as inverse agonist and full agonist, respectively, on the mGlu(5) HD in the absence of the extracellular domain. This finding illustrates that, like rhodopsin-like receptors, the HD of mGluRs can constitutively couple to G proteins and be negatively and positively regulated by ligands. These data show that the HD of mGluRs behave like any other class-I GPCRs in terms of G protein coupling and regulation by various types of ligands.


Subject(s)
Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Rhodopsin/metabolism , Allosteric Regulation , Animals , Cell Line , Cell Membrane/metabolism , Humans , Hydrazines/pharmacology , In Vitro Techniques , Kinetics , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Structure, Tertiary , Pyridines/pharmacology , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...