Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(2)2024 01 16.
Article in English | MEDLINE | ID: mdl-38247854

ABSTRACT

Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.


Subject(s)
Cornea , Exosomes , Humans , Corneal Stroma , Rejuvenation , Epigenomics
2.
Cells ; 12(13)2023 06 27.
Article in English | MEDLINE | ID: mdl-37443766

ABSTRACT

The limbus, the vascularized junction between the cornea and conjunctiva, is thought to function as a barrier against corneal neovascularization. However, the exact mechanisms regulating this remain unknown. In this study, the limbal epithelial stem cell (LESC) marker ABCB5 was used to investigate the role of LESCs in corneal neovascularization. In an ABCB5KO model, a mild but significant increase of limbal lymphatic and blood vascular network complexity was observed in developing mice (4 weeks) but not in adult mice. Conversely, when using a cornea suture model, the WT animals exhibited a mild but significant increase in the number of lymphatic vessel sprouts compared to the ABCB5KO, suggesting a contextual anti-lymphangiogenic effect of ABCB5 on the limbal vasculature during development, but a pro-lymphangiogenic effect under inflammatory challenge in adulthood. In addition, conditioned media from ABCB5-positive cultured human limbal epithelial cells (ABCB5+) stimulated human blood and lymphatic endothelial cell proliferation and migration. Finally, a proteomic analysis demonstrated ABCB5+ cells have a pro(lymph)angiogenic as well as an anti-inflammatory profile. These data suggest a novel dual, context-dependent role of ABCB5+ LESCs, inhibiting developmental but promoting inflammatory (lymph)angiogenesis in adulthood and exerting anti-inflammatory effects. These findings are of high clinical relevance in relation to LESC therapy against blindness.


Subject(s)
Corneal Neovascularization , Keratitis , Limbus Corneae , Adult , Humans , Animals , Mice , Corneal Neovascularization/prevention & control , Proteomics , Limbus Corneae/physiology , Stem Cells/physiology , Inflammation , ATP Binding Cassette Transporter, Subfamily B/genetics
3.
Prog Retin Eye Res ; 96: 101157, 2023 09.
Article in English | MEDLINE | ID: mdl-36759312

ABSTRACT

Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.


Subject(s)
Corneal Transplantation , Glaucoma , Lymphatic Vessels , Neoplasms , Humans , Lymphatic Vessels/pathology , Cornea , Lymphangiogenesis , Glaucoma/pathology , Inflammation/pathology , Neoplasms/pathology
4.
Biology (Basel) ; 12(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36829542

ABSTRACT

The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage of DNA is a contributing factor to corneal diseases such as pterygium. There are two main DNA photolesions of UV: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs). Both involve the abnormal linking of adjacent pyrimide bases. In particular, CPD lesions, which account for the vast majority of UV-induced lesions, are inefficiently repaired by nucleotide excision repair (NER) and are thus mutagenic and linked to cancer development in humans. Here, we apply two exogenous enzymes: CPD photolyase (CPDPL) and T4 endonuclease V (T4N5). The efficacy of these enzymes was assayed by the proteomic and immunofluorescence measurements of UVB-induced CPDs before and after treatment. The results showed that CPDs can be rapidly repaired by T4N5 in cell cultures. The usage of CPDPL and T4N5 in ex vivo eyes revealed that CPD lesions persist in the corneal limbus. The proteomic analysis of the T4N5-treated cells shows increases in the components of the angiogenic and inflammatory systems. We conclude that T4N5 and CPDPL show great promise in the treatment of CPD lesions, but the complete clearance of CPDs from the limbus remains a challenge.

5.
Biology (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205145

ABSTRACT

Ultraviolet (UV) irradiation induces DNA lesions in all directly exposed tissues. In the human body, two tissues are chronically exposed to UV: the skin and the cornea. The most frequent UV-induced DNA lesions are cyclobutane pyrimidine dimers (CPDs) that can lead to apoptosis or induce tumorigenesis. Lacking the protective pigmentation of the skin, the transparent cornea is particularly dependent on nucleotide excision repair (NER) to remove UV-induced DNA lesions. The DNA damage response also triggers intracellular autophagy mechanisms to remove damaged material in the cornea; these mechanisms are poorly understood despite their noted involvement in UV-related diseases. Therapeutic solutions involving xenogenic DNA-repair enzymes such as T4 endonuclease V or photolyases exist and are widely distributed for dermatological use. The corneal field lacks a similar set of tools to address DNA-lesions in photovulnerable patients, such as those with genetic disorders or recently transplanted tissue.

6.
Exp Eye Res ; 203: 108400, 2021 02.
Article in English | MEDLINE | ID: mdl-33347868

ABSTRACT

Current research on healthy corneal stromal cells will typically use primary cells as they are the most representative of in vivo behaviour. Primary cells are normally isolated from the limbus of discarded donor peripheral corneal tissue left over from transplantation (due to its relative abundance). Therefore, the central part of the cornea is less used in research as this tissue is usually used for transplantation. In some cases, although rare, the whole cornea, can become available for research. It is important to keep in mind that these corneas often have longer storage time, but the use of the central tissue for research is even more interesting, as knowing what cells are being transplanted into recipients would be highly relevant. To this end, stromal cells were extracted from both the limbus and central button of healthy corneas donated for research. This allowed for important comparison between central and limbal cells in culture. Of interest here was the extraction method of stromal cells from the donor tissue. The two most common methods of extraction are enzyme digestion and explant migration. However, no work has been done to understand how each method relatively affects the extracted cells. The extraction method and location from which stromal cells are harvested seems to have a significant effect on the cell adherence, survival, and gene expression of the stromal cells in culture. Enzyme digested cells showed that limbal and central cells had different gene expressions prior to culture, with gene such as ALDH3A1 being much more expressed in limbal cells. Enzyme digesting the limbal ring seems to yield the hardiest populations of stromal cells, a desirable trait in the culture of primary cells.


Subject(s)
Cell Separation/methods , Corneal Keratocytes/physiology , Corneal Stroma/cytology , Limbus Corneae/cytology , Cell Culture Techniques , Cell Survival/physiology , Culture Media, Serum-Free , Cytoskeletal Proteins/genetics , Gene Expression Regulation/physiology , Humans , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tissue Donors
7.
Anat Rec (Hoboken) ; 303(6): 1680-1688, 2020 06.
Article in English | MEDLINE | ID: mdl-30768862

ABSTRACT

Keratoconus is the most common ectatic disease of the cornea. The disease is usually detected between ages 15 and 25. Incidence is estimated at one out of every 2000 individuals, with some specific ethnic groups being more at risk. Keratoconus manifests itself as a progressive stromal thinning and deformation of the corneal tissue into a conical shape. The etiology of keratoconus is uncertain, although several studies have associated the disease to environmental factors, behavioral conditions and certain genetic disorders. In an effort to better understand how the corneal stroma becomes compromised, multiple experiments have been conducted over the last few years looking at the cells themselves and the factors they produce. The secretion pathways and levels of inflammatory molecules, growth factors, digestive enzymes, and apoptotic factors are all relevant to keratoconus. This review describes the current knowledge of keratoconic pathological signaling pathways within the cornea that may help future developments in disease prevention, treatment and modeling. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Cornea/metabolism , Extracellular Matrix/metabolism , Keratoconus/metabolism , Cytokines/metabolism , Extracellular Matrix/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Keratoconus/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...