Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Comb Sci ; 19(3): 145-152, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28045488

ABSTRACT

This Research Article presents a strategy to identify the optimum compositions in metal alloys with certain desired properties in a high-throughput screening environment, using a multiobjective optimization approach. In addition to the identification of the optimum compositions in a primary screening, the strategy also allows pointing to regions in the compositional space where further exploration in a secondary screening could be carried out. The strategy for the primary screening is a combination of two multiobjective optimization approaches namely Pareto optimality and desirability functions. The experimental data used in the present study have been collected from over 200 different compositions belonging to four different alloy systems. The metal alloys (comprising Fe, Ti, Al, Nb, Hf, Zr) are synthesized and screened using high-throughput technologies. The advantages of such a kind of approach compared to the limitations of the traditional and comparatively simpler approaches like ranking and calculating figures of merit are discussed.


Subject(s)
Alloys/chemistry , Algorithms , Electric Conductivity , Hardness , Materials Testing
2.
Phys Chem Chem Phys ; 17(4): 2884, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25437121

ABSTRACT

Correction for 'High throughput first-principles calculations of bixbyite oxides for TCO applications' by Nasrin Sarmadian et al., Phys. Chem. Chem. Phys., 2014, 16, 17724-17733.

3.
Phys Chem Chem Phys ; 16(33): 17724-33, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25030767

ABSTRACT

We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...