Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Bioinformatics ; 35(11): 1829-1836, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30351359

ABSTRACT

MOTIVATION: Next-Generation Sequencing has led to the availability of massive genomic datasets whose processing raises many challenges, including the handling of sequencing errors. This is especially pertinent in cancer genomics, e.g. for detecting low allele frequency variations from circulating tumor DNA. Barcode tagging of DNA molecules with unique molecular identifiers (UMI) attempts to mitigate sequencing errors; UMI tagged molecules are polymerase chain reaction (PCR) amplified, and the PCR copies of UMI tagged molecules are sequenced independently. However, the PCR and sequencing steps can generate errors in the sequenced reads that can be located in the barcode and/or the DNA sequence. Analyzing UMI tagged sequencing data requires an initial clustering step, with the aim of grouping reads sequenced from PCR duplicates of the same UMI tagged molecule into a single cluster, and the size of the current datasets requires this clustering process to be resource-efficient. RESULTS: We introduce Calib, a computational tool that clusters paired-end reads from UMI tagged sequencing experiments generated by substitution-error-dominant sequencing platforms such as Illumina. Calib clusters are defined as connected components of a graph whose edges are defined in terms of both barcode similarity and read sequence similarity. The graph is constructed efficiently using locality sensitive hashing and MinHashing techniques. Calib's default clustering parameters are optimized empirically, for different UMI and read lengths, using a simulation module that is packaged with Calib. Compared to other tools, Calib has the best accuracy on simulated data, while maintaining reasonable runtime and memory footprint. On a real dataset, Calib runs with far less resources than alignment-based methods, and its clusters reduce the number of tentative false positive in downstream variation calling. AVAILABILITY AND IMPLEMENTATION: Calib is implemented in C++ and its simulation module is implemented in Python. Calib is available at https://github.com/vpc-ccg/calib. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Algorithms , Cluster Analysis , DNA , Sequence Analysis, DNA
2.
Gigascience ; 7(6)2018 06 01.
Article in English | MEDLINE | ID: mdl-29757368

ABSTRACT

Background: Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results: We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion: To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.


Subject(s)
Neuroendocrine Tumors/genetics , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Binding Sites , Cell Transdifferentiation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Mice , Neoplasm Metastasis , Neuroendocrine Tumors/pathology , Nucleotide Motifs/genetics , Phenotype , Prostatic Neoplasms/pathology , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Transcriptome/genetics , Xenograft Model Antitumor Assays
3.
Eur Urol ; 73(4): 524-532, 2018 04.
Article in English | MEDLINE | ID: mdl-28330676

ABSTRACT

BACKGROUND: Clinical grading systems using clinical features alongside nomograms lack precision in guiding treatment decisions in prostate cancer (PCa). There is a critical need for identification of biomarkers that can more accurately stratify patients with primary PCa. OBJECTIVE: To identify a robust prognostic signature to better distinguish indolent from aggressive prostate cancer (PCa). DESIGN, SETTING, AND PARTICIPANTS: To develop the signature, whole-genome and whole-transcriptome sequencing was conducted on five PCa patient-derived xenograft (PDX) models collected from independent foci of a single primary tumor and exhibiting variable metastatic phenotypes. Multiple independent clinical cohorts including an intermediate-risk cohort were used to validate the biomarkers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The outcome measurement defining aggressive PCa was metastasis following radical prostatectomy. A generalized linear model with lasso regularization was used to build a 93-gene stroma-derived metastasis signature (SDMS). The SDMS association with metastasis was assessed using a Wilcoxon rank-sum test. Performance was evaluated using the area under the curve (AUC) for the receiver operating characteristic, and Kaplan-Meier curves. Univariable and multivariable regression models were used to compare the SDMS alongside clinicopathological variables and reported signatures. AUC was assessed to determine if SDMS is additive or synergistic to previously reported signatures. RESULTS AND LIMITATIONS: A close association between stromal gene expression and metastatic phenotype was observed. Accordingly, the SDMS was modeled and validated in multiple independent clinical cohorts. Patients with higher SDMS scores were found to have worse prognosis. Furthermore, SDMS was an independent prognostic factor, can stratify risk in intermediate-risk PCa, and can improve the performance of other previously reported signatures. CONCLUSIONS: Profiling of stromal gene expression led to development of an SDMS that was validated as independently prognostic for the metastatic potential of prostate tumors. PATIENT SUMMARY: Our stroma-derived metastasis signature can predict the metastatic potential of early stage disease and will strengthen decisions regarding selection of active surveillance versus surgery and/or radiation therapy for prostate cancer patients. Furthermore, profiling of stroma cells should be more consistent than profiling of diverse cellular populations of heterogeneous tumors.


Subject(s)
Gene Expression Profiling/methods , Neoplasm Metastasis , Prostatectomy , Prostatic Neoplasms , Stromal Cells/physiology , Xenograft Model Antitumor Assays/methods , Aged , Animals , Genome-Wide Association Study , Humans , Male , Mice , Middle Aged , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Staging , Outcome Assessment, Health Care , Predictive Value of Tests , Prognosis , Prostate-Specific Antigen/analysis , Prostatectomy/adverse effects , Prostatectomy/methods , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Risk Assessment/methods
4.
Eur Urol ; 73(3): 322-339, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28927585

ABSTRACT

BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The genomic alteration landscape in PCa was analyzed using an integrated computational pipeline. Relationships with PCa progression and survival were analyzed using nonparametric test, log-rank, and multivariable Cox regression analyses. RESULTS AND LIMITATIONS: We demonstrated an association of high frequency of CHD1 deletion with a low rate of TMPRSS2-ERG fusion and relatively high percentage of mutations in androgen receptor upstream activator genes in Chinese patients. We identified five putative clustered deleted tumor suppressor genes and provided experimental and clinical evidence that PCDH9, deleted/loss in approximately 23% of tumors, functions as a novel tumor suppressor gene with prognostic potential in PCa. Furthermore, axon guidance pathway genes were frequently deregulated, including gain/amplification of PLXNA1 gene in approximately 17% of tumors. Functional and clinical data analyses showed that increased expression of PLXNA1 promoted prostate tumor growth and independently predicted prostate tumor biochemical recurrence, metastasis, and poor survival in multi-institutional cohorts of patients with PCa. A limitation of this study is that other genetic alterations were not experimentally investigated. CONCLUSIONS: There are shared and salient genetic characteristics of PCa in Chinese and Caucasian men. Novel genetic alterations in PCDH9 and PLXNA1 were associated with disease progression. PATIENT SUMMARY: We reported the first large-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment.

5.
Clin Cancer Res ; 23(21): 6487-6497, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28760909

ABSTRACT

Purpose: Targeted agents and immunotherapies promise to transform the treatment of metastatic bladder cancer, but therapy selection will depend on practical tumor molecular stratification. Circulating tumor DNA (ctDNA) is established in several solid malignancies as a minimally invasive tool to profile the tumor genome in real-time, but is critically underexplored in bladder cancer.Experimental Design: We applied a combination of whole-exome sequencing and targeted sequencing across 50 bladder cancer driver genes to plasma cell-free DNA (cfDNA) from 51 patients with aggressive bladder cancer, including 37 with metastatic disease.Results: The majority of patients with metastasis, but only 14% of patients with localized disease, had ctDNA proportions above 2% of total cfDNA (median 16.5%, range 3.9%-72.6%). Twelve percent of estimable samples had evidence of genome hypermutation. We reveal an aggressive mutational landscape in metastatic bladder cancer with 95% of patients harboring deleterious alterations to TP53, RB1, or MDM2, and 70% harboring a mutation or disrupting rearrangement affecting chromatin modifiers such as ARID1A Targetable alterations in MAPK/ERK or PI3K/AKT/mTOR pathways were robustly detected, including amplification of ERBB2 (20% of patients) and activating hotspot mutations in PIK3CA (20%), with the latter mutually exclusive to truncating mutations in TSC1 A novel FGFR3 gene fusion was identified in consecutive samples from one patient.Conclusions: Our study demonstrates that ctDNA provides a practical and cost-effective snapshot of driver gene status in metastatic bladder cancer. The identification of a wide spectrum of clinically informative somatic alterations nominates ctDNA as a tool to dissect disease pathogenesis and guide therapy selection in patients with metastatic bladder cancer. Clin Cancer Res; 23(21); 6487-97. ©2017 AACR.


Subject(s)
Circulating Tumor DNA/blood , Exome Sequencing , Genome, Human , Urinary Bladder Neoplasms/blood , Class I Phosphatidylinositol 3-Kinases/blood , Exome/genetics , Female , Humans , Male , Mutation , Neoplasm Metastasis , Proto-Oncogene Proteins c-mdm2/blood , Receptor, ErbB-2/blood , Retinoblastoma Binding Proteins/blood , Signal Transduction , Tumor Suppressor Protein p53/blood , Ubiquitin-Protein Ligases/blood , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
6.
Bioinformatics ; 33(1): 26-34, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27531099

ABSTRACT

MOTIVATION: Successful development and application of precision oncology approaches require robust elucidation of the genomic landscape of a patient's cancer and, ideally, the ability to monitor therapy-induced genomic changes in the tumour in an inexpensive and minimally invasive manner. Thanks to recent advances in sequencing technologies, 'liquid biopsy', the sampling of patient's bodily fluids such as blood and urine, is considered as one of the most promising approaches to achieve this goal. In many cancer patients, and especially those with advanced metastatic disease, deep sequencing of circulating cell free DNA (cfDNA) obtained from patient's blood yields a mixture of reads originating from the normal DNA and from multiple tumour subclones-called circulating tumour DNA or ctDNA. The ctDNA/cfDNA ratio as well as the proportion of ctDNA originating from specific tumour subclones depend on multiple factors, making comprehensive detection of mutations difficult, especially at early stages of cancer. Furthermore, sensitive and accurate detection of single nucleotide variants (SNVs) and indels from cfDNA is constrained by several factors such as the sequencing errors and PCR artifacts, and mapping errors related to repeat regions within the genome. In this article, we introduce SiNVICT, a computational method that increases the sensitivity and specificity of SNV and indel detection at very low variant allele frequencies. SiNVICT has the capability to handle multiple sequencing platforms with different error properties; it minimizes false positives resulting from mapping errors and other technology specific artifacts including strand bias and low base quality at read ends. SiNVICT also has the capability to perform time-series analysis, where samples from a patient sequenced at multiple time points are jointly examined to report locations of interest where there is a possibility that certain clones were wiped out by some treatment while some subclones gained selective advantage. RESULTS: We tested SiNVICT on simulated data as well as prostate cancer cell lines and cfDNA obtained from castration-resistant prostate cancer patients. On both simulated and biological data, SiNVICT was able to detect SNVs and indels with variant allele percentages as low as 0.5%. The lowest amounts of total DNA used for the biological data where SNVs and indels could be detected with very high sensitivity were 2.5 ng on the Ion Torrent platform and 10 ng on Illumina. With increased sequencing and mapping accuracy, SiNVICT might be utilized in clinical settings, making it possible to track the progress of point mutations and indels that are associated with resistance to cancer therapies and provide patients personalized treatment. We also compared SiNVICT with other popular SNV callers such as MuTect, VarScan2 and Freebayes. Our results show that SiNVICT performs better than these tools in most cases and allows further data exploration such as time-series analysis on cfDNA sequencing data. AVAILABILITY AND IMPLEMENTATION: SiNVICT is available at: https://sfu-compbio.github.io/sinvictSupplementary information: Supplementary data are available at Bioinformatics online. CONTACT: cenk@sfu.ca.


Subject(s)
DNA Mutational Analysis/methods , DNA, Neoplasm/blood , INDEL Mutation , Neoplasms/genetics , Point Mutation , Software , Gene Frequency , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Neoplasms/blood , Sensitivity and Specificity
7.
JAMA Oncol ; 2(12): 1598-1606, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27148695

ABSTRACT

IMPORTANCE: The molecular landscape underpinning response to the androgen receptor (AR) antagonist enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) is undefined. Consequently, there is an urgent need for practical biomarkers to guide therapy selection and elucidate resistance. Although tissue biopsies are impractical to perform routinely in the majority of patients with mCRPC, the analysis of plasma cell-free DNA (cfDNA) has recently emerged as a minimally invasive method to explore tumor characteristics. OBJECTIVE: To reveal genomic characteristics from cfDNA associated with clinical outcomes during enzalutamide treatment. DESIGN, SETTING, AND PARTICIPANTS: Plasma samples were obtained from August 4, 2013, to July 31, 2015, at a single academic institution (British Columbia Cancer Agency) from 65 patients with mCRPC. We collected temporal plasma samples (at baseline, 12 weeks, end of treatment) for circulating cfDNA and performed array comparative genomic hybridization copy number profiling and deep AR gene sequencing. Samples collected at end of treatment were also subjected to targeted sequencing of 19 prostate cancer-associated genes. EXPOSURE: Enzalutamide, 160 mg, daily orally. MAIN OUTCOMES AND MEASURES: Prostate-specific antigen response rate (decline ≥50% from baseline confirmed ≥3 weeks later). Radiographic (as per Prostate Cancer Working Group 2 Criteria) and/or clinical progression (defined as worsening disease-related symptoms necessitating a change in anticancer therapy and/or deterioration in Eastern Cooperative Group performance status ≥2 levels). RESULTS: The 65 patients had a median (interquartile range) age of 74 (68-79) years. Prostate-specific antigen response rate to enzalutamide treatment was 38% (25 of 65), while median clinical/radiographic progression-free survival was 3.5 (95% CI, 2.1-5.0) months. Cell-free DNA was isolated from 122 of 125 plasma samples, and targeted sequencing was successful in 119 of 122. AR mutations and/or copy number alterations were robustly detected in 48% (31 of 65) and 60% (18 of 30) of baseline and progression samples, respectively. Detection of AR amplification, heavily mutated AR (≥2 mutations), and RB1 loss were associated with worse progression-free survival, with hazard ratios of 2.92 (95% CI, 1.59-5.37), 3.94 (95% CI, 1.46-10.64), and 4.46 (95% CI, 2.28-8.74), respectively. AR mutations exhibited clonal selection during treatment, including an increase in glucocorticoid-sensitive AR L702H and promiscuous AR T878A in patients with prior abiraterone treatment. At the time of progression, cfDNA sequencing revealed mutations or copy number changes in all patients tested, including clinically actionable alterations in DNA damage repair genes and PI3K pathway genes, and a high frequency (4 of 14) of activating CTNNB1 mutations. CONCLUSIONS AND RELEVANCE: Clinically informative genomic profiling of cfDNA was feasible in nearly all patients with mCRPC and can provide important insights into enzalutamide response and resistance.


Subject(s)
Biomarkers, Tumor/blood , DNA, Neoplasm/blood , Prostatic Neoplasms, Castration-Resistant/blood , Receptors, Androgen/blood , Retinoblastoma Binding Proteins/blood , Ubiquitin-Protein Ligases/blood , Aged , Aged, 80 and over , Androgen Receptor Antagonists/administration & dosage , Benzamides , DNA Copy Number Variations , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Genomics , Humans , Male , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Treatment Outcome , beta Catenin/blood
8.
Genome Biol ; 17: 10, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26813233

ABSTRACT

BACKGROUND: The androgen receptor (AR) is a pivotal drug target for the treatment of prostate cancer, including its lethal castration-resistant (CRPC) form. All current non-steroidal AR antagonists, such as hydroxyflutamide, bicalutamide, and enzalutamide, target the androgen binding site of the receptor, competing with endogenous androgenic steroids. Several AR mutations in this binding site have been associated with poor prognosis and resistance to conventional prostate cancer drugs. In order to develop an effective CRPC therapy, it is crucial to understand the effects of these mutations on the functionality of the AR and its ability to interact with endogenous steroids and conventional AR inhibitors. RESULTS: We previously utilized circulating cell-free DNA (cfDNA) sequencing technology to examine the AR gene for the presence of mutations in CRPC patients. By modifying our sequencing and data analysis approaches, we identify four additional single AR mutations and five mutation combinations associated with CRPC. Importantly, we conduct experimental functionalization of all the AR mutations identified by the current and previous cfDNA sequencing to reveal novel gain-of-function scenarios. Finally, we evaluate the effect of a novel class of AR inhibitors targeting the binding function 3 (BF3) site on the activity of CRPC-associated AR mutants. CONCLUSIONS: This work demonstrates the feasibility of a prognostic and/or diagnostic platform combining the direct identification of AR mutants from patients' serum, and the functional characterization of these mutants in order to provide personalized recommendations regarding the best future therapy.


Subject(s)
DNA/genetics , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Androgen Receptor Antagonists/therapeutic use , Anilides/pharmacology , Benzamides , DNA/blood , Flutamide/analogs & derivatives , Flutamide/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation/genetics , Nitriles/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Tosyl Compounds/pharmacology
9.
Clin Cancer Res ; 21(10): 2315-24, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25712683

ABSTRACT

PURPOSE: Although novel agents targeting the androgen-androgen receptor (AR) axis have altered the treatment paradigm of metastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzalutamide in mCRPC patients. EXPERIMENTAL DESIGN: Plasma was collected from 62 mCRPC patients ceasing abiraterone acetate (n = 29), enzalutamide (n = 19), or other agents (n = 14) due to disease progression. DNA was extracted and subjected to array comparative genomic hybridization (aCGH) for chromosome copy number analysis, and Roche 454 targeted next-generation sequencing of exon 8 in the AR. RESULTS: On aCGH, AR amplification was significantly more common in patients progressing on enzalutamide than on abiraterone or other agents (53% vs. 17% vs. 21%, P = 0.02, χ(2)). Missense AR exon 8 mutations were detected in 11 of 62 patients (18%), including the first reported case of an F876L mutation in an enzalutamide-resistant patient and H874Y and T877A mutations in 7 abiraterone-resistant patients. In patients switched onto enzalutamide after cfDNA collection (n = 39), an AR gene aberration (copy number increase and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse outcomes, including lower rates of PSA decline ≥ 30% (P = 0.013, χ(2)) and shorter time to radiographic/clinical progression (P = 0.010, Cox proportional hazards regression). CONCLUSIONS: AR gene aberrations in cfDNA are associated with resistance to enzalutamide and abiraterone in mCRPC. Our data illustrate that genomic analysis of cfDNA is a minimally invasive method for interrogating mechanisms of therapeutic resistance in mCRPC.


Subject(s)
Androstenes/pharmacology , Biomarkers, Tumor/blood , DNA, Neoplasm/blood , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Taxoids/pharmacology , Aged , Aged, 80 and over , Androstenes/therapeutic use , DNA Copy Number Variations , DNA Mutational Analysis , Disease-Free Survival , Docetaxel , Drug Resistance, Neoplasm , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation, Missense , Neoplasm Metastasis , Neoplastic Cells, Circulating , Proportional Hazards Models , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/mortality , Taxoids/therapeutic use
10.
Genome Biol ; 15(8): 426, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25155515

ABSTRACT

BACKGROUND: Genomic analyses of hundreds of prostate tumors have defined a diverse landscape of mutations and genome rearrangements, but the transcriptomic effect of this complexity is less well understood, particularly at the individual tumor level. We selected a cohort of 25 high-risk prostate tumors, representing the lethal phenotype, and applied deep RNA-sequencing and matched whole genome sequencing, followed by detailed molecular characterization. RESULTS: Ten tumors were exposed to neo-adjuvant hormone therapy and expressed marked evidence of therapy response in all except one extreme case, which demonstrated early resistance via apparent neuroendocrine transdifferentiation. We observe high inter-tumor heterogeneity, including unique sets of outlier transcripts in each tumor. Interestingly, outlier expression converged on druggable cellular pathways associated with cell cycle progression, translational control or immune regulation, suggesting distinct contemporary pathway affinity and a mechanism of tumor stratification. We characterize hundreds of novel fusion transcripts, including a high frequency of ETS fusions associated with complex genome rearrangements and the disruption of tumor suppressors. Remarkably, several tumors express unique but potentially-oncogenic non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression. Finally, one ETS-negative tumor has a striking tandem duplication genotype which appears to be highly aggressive and present at low recurrence in ETS-negative prostate cancer, suggestive of a novel molecular subtype. CONCLUSIONS: The multitude of rare genomic and transcriptomic events detected in a high-risk tumor cohort offer novel opportunities for personalized oncology and their convergence on key pathways and functions has broad implications for precision medicine.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Antineoplastic Agents, Hormonal/therapeutic use , Chemotherapy, Adjuvant/methods , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-ets/genetics , Sequence Analysis, RNA
11.
PLoS One ; 9(7): e101431, 2014.
Article in English | MEDLINE | ID: mdl-25036877

ABSTRACT

RNA editing modifies the sequence of primary transcripts, potentially resulting in profound effects to RNA structure and protein-coding sequence. Recent analyses of RNA sequence data are beginning to provide insights into the distribution of RNA editing across the entire transcriptome, but there are few published matched whole genome and transcriptome sequence datasets, and designing accurate bioinformatics methodology has proven highly challenging. To further characterize the RNA editome, we analyzed 16 paired DNA-RNA sequence libraries from prostate tumor specimens, employing a comprehensive strategy to rescue low coverage sites and minimize false positives. We identified over a hundred thousand putative RNA editing events, a third of which were recurrent in two or more samples, and systematically characterized their type and distribution across the genome. Within genes the majority of events affect non-coding regions such as introns and untranslated regions (UTRs), but 546 genes had RNA editing events predicted to result in deleterious amino acid alterations. Finally, we report a potential association between RNA editing of microRNA binding sites within 3' UTRs and increased transcript expression. These results provide a systematic characterization of the landscape of RNA editing in low coverage sequence data from prostate tumor specimens. We demonstrate further evidence for RNA editing as an important regulatory mechanism and suggest that the RNA editome should be further studied in cancer.


Subject(s)
Computational Biology/methods , Prostatic Neoplasms/genetics , RNA Editing , Conserved Sequence , DNA/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , RNA/genetics
12.
Asian J Androl ; 16(4): 515-21, 2014.
Article in English | MEDLINE | ID: mdl-24830689

ABSTRACT

Alternative splicing (AS) is a crucial step in gene expression. It is subject to intricate regulation, and its deregulation in cancer can lead to a wide array of neoplastic phenotypes. A large body of evidence implicates splice isoforms in most if not all hallmarks of cancer, including growth, apoptosis, invasion and metastasis, angiogenesis, and metabolism. AS has important clinical implications since it can be manipulated therapeutically to treat cancer and represents a mechanism of resistance to therapy. In prostate cancer (PCa) AS also plays a prominent role and this review will summarize the current knowledge of alternatively spliced genes with important functional consequences. We will highlight accumulating evidence on AS of the components of the two critical pathways in PCa: androgen receptor (AR) and phosphoinositide 3-kinase (PI3K). These observations together with data on dysregulation of splice factors in PCa suggest that AR and PI3K pathways may be interconnected with previously unappreciated splicing regulatory networks. In addition, we will discuss several lines of evidence implicating splicing regulation in the development of the castration resistance.


Subject(s)
Phosphatidylinositol 3-Kinases/genetics , Prostatic Neoplasms/genetics , RNA Splicing/physiology , RNA, Messenger/genetics , Receptors, Androgen/genetics , Alternative Splicing , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , Receptors, Androgen/metabolism
13.
Cancer Res ; 74(4): 1272-83, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24356420

ABSTRACT

Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.


Subject(s)
Adenocarcinoma/diagnosis , Adenocarcinoma/drug therapy , Antineoplastic Agents/isolation & purification , Drug Discovery/methods , Early Detection of Cancer/methods , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neoplasm Transplantation/standards , Tissue and Organ Procurement/standards , Xenograft Model Antitumor Assays/standards
14.
Genes Chromosomes Cancer ; 51(12): 1144-53, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22927308

ABSTRACT

Complex genome rearrangements are frequently observed in cancer but their impact on tumor molecular biology is largely unknown. Recent studies have identified a new phenomenon involving the simultaneous generation of tens to hundreds of genomic rearrangements, called chromothripsis. To understand the molecular consequences of these events, we sequenced the genomes and transcriptomes of two prostate tumors exhibiting evidence of chromothripsis. We identified several complex fusion transcripts, each containing sequence from three different genes, originating from different parts of the genome. One such poly-gene fusion transcript appeared to be expressed from a chain of small genomic fragments. Furthermore, we detected poly-gene fusion transcripts in the prostate cancer cell line LNCaP, suggesting they may represent a common phenomenon. Finally in one tumor with chromothripsis, we identified multiple mutations in the p53 signaling pathway, expanding on recent work associating aberrant DNA damage response mechanisms with chromothripsis. Overall, our data show that chromothripsis can manifest as massively rearranged transcriptomes. The implication that multigenic changes can give rise to poly-gene fusion transcripts is potentially of great significance to cancer genetics.


Subject(s)
Prostatic Neoplasms/genetics , Cell Line, Tumor , Chromosome Aberrations , Gene Fusion , Humans , Male , Mutation , Prostatic Neoplasms/pathology
15.
J Pathol ; 227(3): 286-97, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22553170

ABSTRACT

The current paradigm of cancer care relies on predictive nomograms which integrate detailed histopathology with clinical data. However, when predictions fail, the consequences for patients are often catastrophic, especially in prostate cancer where nomograms influence the decision to therapeutically intervene. We hypothesized that the high dimensional data afforded by massively parallel sequencing (MPS) is not only capable of providing biological insights, but may aid molecular pathology of prostate tumours. We assembled a cohort of six patients with high-risk disease, and performed deep RNA and shallow DNA sequencing in primary tumours and matched metastases where available. Our analysis identified copy number abnormalities, accurately profiled gene expression levels, and detected both differential splicing and expressed fusion genes. We revealed occult and potentially dormant metastases, unambiguously supporting the patients' clinical history, and implicated the REST transcriptional complex in the development of neuroendocrine prostate cancer, validating this finding in a large independent cohort. We massively expand on the number of novel fusion genes described in prostate cancer; provide fresh evidence for the growing link between fusion gene aetiology and gene expression profiles; and show the utility of fusion genes for molecular pathology. Finally, we identified chromothripsis in a patient with chronic prostatitis. Our results provide a strong foundation for further development of MPS-based molecular pathology.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Neoplasms, Hormone-Dependent/genetics , Neuroendocrine Cells/metabolism , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/secondary , Adenocarcinoma/therapy , Aged , Alternative Splicing , Biomarkers, Tumor/blood , British Columbia , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cluster Analysis , Decision Support Techniques , Gene Dosage , Gene Fusion , Genetic Predisposition to Disease , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasms, Hormone-Dependent/metabolism , Neoplasms, Hormone-Dependent/pathology , Neoplasms, Hormone-Dependent/therapy , Neuroendocrine Cells/pathology , Nomograms , Patient Selection , Phenotype , Precision Medicine , Prognosis , Prostate-Specific Antigen/blood , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , RNA Interference , Transfection
16.
J Pathol ; 227(1): 53-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22294438

ABSTRACT

Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora. Despite a homogeneous cell type, our transcriptome analysis revealed signatures of both luminal and neuroendocrine cell types. Remarkably, the repertoire of expressed but apparently private gene fusions, including C15orf21:MYC, recapitulated this biology. We hypothesize that the amplification and over-expression of the stem cell gene MSI2 may have contributed to the stable hybrid cellular identity. This hybrid luminal-neuroendocrine tumour appears to represent a novel and highly aggressive case of prostate cancer with unique biological features and, conceivably, a propensity for rapid progression to castrate-resistance. Overall, this work highlights the importance of integrated analyses of genome, exome and transcriptome sequences for basic tumour biology, sequence-based molecular pathology and personalized oncology.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Genomics , Prostatic Neoplasms/genetics , Adenocarcinoma/secondary , Adenocarcinoma/therapy , Combined Modality Therapy , DNA, Neoplasm/analysis , Gene Amplification , Gene Dosage , Gene Expression Profiling , Gene Fusion , Humans , Male , Middle Aged , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Prognosis , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Analysis, DNA , Sequence Analysis, RNA
17.
Mol Cancer Ther ; 11(3): 775-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22252602

ABSTRACT

Castrate-resistant prostate cancer (CRPC) and neuroendocrine carcinoma of the prostate are invariably fatal diseases for which only palliative therapies exist. As part of a prostate tumor sequencing program, a patient tumor was analyzed using Illumina genome sequencing and a matched renal capsule tumor xenograft was generated. Both tumor and xenograft had a homozygous 9p21 deletion spanning the MTAP, CDKN2, and ARF genes. It is rare for this deletion to occur in primary prostate tumors, yet approximately 10% express decreased levels of methylthioadenosine phosphorylase (MTAP) mRNA. Decreased MTAP expression is a prognosticator for poor outcome. Moreover, it seems that this deletion is more common in CRPC than in primary prostate cancer. We show for the first time that treatment with methylthioadenosine and high dose 6-thioguanine causes marked inhibition of a patient-derived neuroendocrine xenograft growth while protecting the host from 6-thioguanine toxicity. This therapeutic approach can be applied to other MTAP-deficient human cancers as deletion or hypermethylation of the MTAP gene occurs in a broad spectrum of tumors at high frequency. The combination of genome sequencing and patient-derived xenografts can identify candidate therapeutic agents and evaluate them for personalized oncology.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 9/genetics , Prostatic Neoplasms/genetics , Purine-Nucleoside Phosphorylase/genetics , Sequence Analysis, DNA/methods , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclin-Dependent Kinase Inhibitor p16/genetics , Deoxyadenosines/administration & dosage , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/secondary , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Purine-Nucleoside Phosphorylase/deficiency , Thioguanine/administration & dosage , Thionucleosides/administration & dosage , Treatment Outcome , Urethral Neoplasms/drug therapy , Urethral Neoplasms/genetics , Urethral Neoplasms/secondary , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...