Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e7892, 2019.
Article in English | MEDLINE | ID: mdl-31741781

ABSTRACT

Spatial and temporal patterns in stream temperature are primary factors determining species composition, diversity and productivity in stream ecosystems. The availability of spatially and temporally continuous estimates of stream temperature would improve the ability of biologists to fully explore the effects of stream temperature on biota. Most statistical stream temperature modeling techniques are limited in their ability to account for the influence of variables changing across spatial and temporal gradients. We identified and described important interactions between climate and spatial variables that approximate mechanistic controls on spatiotemporal patterns in stream temperature. With identified relationships we formed models to generate reach-scale basin-wide spatially and temporally continuous predictions of daily mean stream temperature in four Columbia River tributaries watersheds of the Pacific Northwest, USA. Models were validated with a testing dataset composed of completely distinct sites and measurements from different years. While some patterns in residuals remained, testing dataset predictions of selected models demonstrated high accuracy and precision (averaged RMSE for each watershed ranged from 0.85-1.54 °C) and was only 17% higher on average than training dataset prediction error. Aggregating daily predictions to monthly predictions of mean stream temperature reduced prediction error by an average of 23%. The accuracy of predictions was largely consistent across diverse climate years, demonstrating the ability of the models to capture the influences of interannual climatic variability and extend predictions to timeframes with limited temperature logger data. Results suggest that the inclusion of a range of interactions between spatial and climatic variables can approximate dynamic mechanistic controls on stream temperatures.

3.
PLoS One ; 12(5): e0176313, 2017.
Article in English | MEDLINE | ID: mdl-28520714

ABSTRACT

Beaver are an integral component of hydrologic, geomorphic, and biotic processes within North American stream systems, and their propensity to build dams alters stream and riparian structure and function to the benefit of many aquatic and terrestrial species. Recognizing this, beaver relocation efforts and/or application of structures designed to mimic the function of beaver dams are increasingly being utilized as effective and cost-efficient stream and riparian restoration approaches. Despite these verities, the notion that beaver dams negatively impact stream habitat remains common, specifically the assumption that beaver dams increase stream temperatures during summer to the detriment of sensitive biota such as salmonids. In this study, we tracked beaver dam distributions and monitored water temperature throughout 34 km of stream for an eight-year period between 2007 and 2014. During this time the number of natural beaver dams within the study area increased by an order of magnitude, and an additional 4 km of stream were subject to a restoration manipulation that included installing a high-density of Beaver Dam Analog (BDA) structures designed to mimic the function of natural beaver dams. Our observations reveal several mechanisms by which beaver dam development may influence stream temperature regimes; including longitudinal buffering of diel summer temperature extrema at the reach scale due to increased surface water storage, and creation of cool-water channel scale temperature refugia through enhanced groundwater-surface water connectivity. Our results suggest that creation of natural and/or artificial beaver dams could be used to mitigate the impact of human induced thermal degradation that may threaten sensitive species.


Subject(s)
Rivers , Rodentia/physiology , Temperature , Animals , Behavior, Animal
4.
Sci Rep ; 6: 28581, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27373190

ABSTRACT

Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations.


Subject(s)
Ecosystem , Endangered Species , Oncorhynchus mykiss/physiology , Rivers , Rodentia , Animals
5.
PLoS One ; 10(6): e0131765, 2015.
Article in English | MEDLINE | ID: mdl-26126211

ABSTRACT

In ecology, as in other research fields, efficient sampling for population estimation often drives sample designs toward unequal probability sampling, such as in stratified sampling. Design based statistical analysis tools are appropriate for seamless integration of sample design into the statistical analysis. However, it is also common and necessary, after a sampling design has been implemented, to use datasets to address questions that, in many cases, were not considered during the sampling design phase. Questions may arise requiring the use of model based statistical tools such as multiple regression, quantile regression, or regression tree analysis. However, such model based tools may require, for ensuring unbiased estimation, data from simple random samples, which can be problematic when analyzing data from unequal probability designs. Despite numerous method specific tools available to properly account for sampling design, too often in the analysis of ecological data, sample design is ignored and consequences are not properly considered. We demonstrate here that violation of this assumption can lead to biased parameter estimates in ecological research. In addition, to the set of tools available for researchers to properly account for sampling design in model based analysis, we introduce inverse probability bootstrapping (IPB). Inverse probability bootstrapping is an easily implemented method for obtaining equal probability re-samples from a probability sample, from which unbiased model based estimates can be made. We demonstrate the potential for bias in model-based analyses that ignore sample inclusion probabilities, and the effectiveness of IPB sampling in eliminating this bias, using both simulated and actual ecological data. For illustration, we considered three model based analysis tools--linear regression, quantile regression, and boosted regression tree analysis. In all models, using both simulated and actual ecological data, we found inferences to be biased, sometimes severely, when sample inclusion probabilities were ignored, while IPB sampling effectively produced unbiased parameter estimates.


Subject(s)
Research Design/statistics & numerical data , Sampling Studies , Selection Bias , Computer Simulation , Ecology , Models, Statistical , Regression Analysis
6.
Environ Manage ; 53(5): 883-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24604667

ABSTRACT

Increasingly, research and management in natural resource science rely on very large datasets compiled from multiple sources. While it is generally good to have more data, utilizing large, complex datasets has introduced challenges in data sharing, especially for collaborating researchers in disparate locations ("distributed research teams"). We surveyed natural resource scientists about common data-sharing problems. The major issues identified by our survey respondents (n = 118) when providing data were lack of clarity in the data request (including format of data requested). When receiving data, survey respondents reported various insufficiencies in documentation describing the data (e.g., no data collection description/no protocol, data aggregated, or summarized without explanation). Since metadata, or "information about the data," is a central obstacle in efficient data handling, we suggest documenting metadata through data dictionaries, protocols, read-me files, explicit null value documentation, and process metadata as essential to any large-scale research program. We advocate for all researchers, but especially those involved in distributed teams to alleviate these problems with the use of several readily available communication strategies including the use of organizational charts to define roles, data flow diagrams to outline procedures and timelines, and data update cycles to guide data-handling expectations. In particular, we argue that distributed research teams magnify data-sharing challenges making data management training even more crucial for natural resource scientists. If natural resource scientists fail to overcome communication and metadata documentation issues, then negative data-sharing experiences will likely continue to undermine the success of many large-scale collaborative projects.


Subject(s)
Conservation of Natural Resources/methods , Cooperative Behavior , Information Dissemination/methods , Information Management/methods , Research Design , Humans , Surveys and Questionnaires
7.
Conserv Biol ; 26(5): 873-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22827880

ABSTRACT

Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species-juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)-in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69-95%, 51-87%, and 86-100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Oncorhynchus/physiology , Trout/physiology , Animal Migration , Animals , Forecasting , Hot Temperature , Models, Theoretical , Oregon , Reproduction , Rivers , Seasons , Spatial Analysis , Species Specificity
8.
Plant Physiol ; 132(4): 2073-85, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12913162

ABSTRACT

Four proteins with wall extension activity on grass cell walls were purified from maize (Zea mays) pollen by conventional column chromatography and high-performance liquid chromatography. Each is a basic glycoprotein (isoelectric point = 9.1-9.5) of approximately 28 kD and was identified by immunoblot analysis as an isoform of Zea m 1, the major group 1 allergen of maize pollen and member of the beta-expansin family. Four distinctive cDNAs for Zea m 1 were identified by cDNA library screening and by GenBank analysis. One pair (GenBank accession nos. AY104999 and AY104125) was much closer in sequence to well-characterized allergens such as Lol p 1 and Phl p 1 from ryegrass (Lolium perenne) and Phleum pretense, whereas a second pair was much more divergent. The N-terminal sequence and mass spectrometry fingerprint of the most abundant isoform (Zea m 1d) matched that predicted for AY197353, whereas N-terminal sequences of the other isoforms matched or nearly matched AY104999 and AY104125. Highly purified Zea m 1d induced extension of a variety of grass walls but not dicot walls. Wall extension activity of Zea m 1d was biphasic with respect to protein concentration, had a broad pH optimum between 5 and 6, required more than 50 micro g mL(-1) for high activity, and led to cell wall breakage after only approximately 10% extension. These characteristics differ from those of alpha-expansins. Some of the distinctive properties of Zea m 1 may not be typical of beta-expansins as a class but may relate to the specialized function of this beta-expansin in pollen function.


Subject(s)
Allergens/isolation & purification , Allergens/metabolism , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Pollen/chemistry , Zea mays/chemistry , Allergens/chemistry , Allergens/genetics , Amino Acid Sequence , Antigens, Plant , Cell Wall/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/isolation & purification , Glycoproteins/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Isoelectric Point , Methanol , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Poaceae/cytology , Poaceae/metabolism , Protein Denaturation , Protein Isoforms/chemistry , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Sequence Alignment , Zea mays/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...