Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 107(3): 663-677, 2019 03.
Article in English | MEDLINE | ID: mdl-30474276

ABSTRACT

In biomaterials research, biomechanics which support tissue regeneration steadily gains of importance. Hence, we have previously shown that gelatin-based electrospun nonwoven mats (NWMs) with a distinct modulus of elasticity (3.2 kPa) promotes epithelial morphogenesis. Since molecular mechanisms of this morphogenesis are still unknown, the present study aims at identifying molecules, involved herein. Epithelia established on the NMWs showed persistence of the activated state of the epidermal growth factor receptor (EGF-R), phosphorylated at the src-specific tyrosine 845 (EGF-RT845 ) throughout the observation period of 10 days. To elucidate whether the observed morphogenesis mechanistically involves EGF-R signaling, we inhibited EGF-R, by employing the EGF-RT845 specific inhibitor Gefitinib (IRESSA®). Gefitinib administration yielded a reduced expression of the ß1 integrin subunit, a well-known cell-matrix interaction receptor, concomitant with downregulation of p42/44 ERK1/2 MAP-kinase activity. To elucidate whether the observed downregulation of ß1 is EGF-RT845 -dependent or emerging from ERK1/2 signaling, we exposed epithelia, grown on the NWMs, with the ERK1/2-directed inhibitor U0126. In the absence of Gefitinib, inhibition of p42/44 MAP-kinase activity resulted in decreased ß1 integrin protein levels, thus indicating that ß1 expression is dependent on ERK1/2 and not EGF-RT845 . Our results showed the first time that an EGF-R-ß1 integrin-signaling axis, including ERK1/2, promotes NWM-elasticity-based epithelial morphogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 663-677, 2019.


Subject(s)
Fibroblasts/metabolism , Gelatin , Keratinocytes/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Butadienes/pharmacology , Cell Line, Transformed , Epithelium/metabolism , ErbB Receptors/metabolism , Fibroblasts/cytology , Gefitinib/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Humans , Integrin beta1/biosynthesis , Keratinocytes/cytology , Nitriles/pharmacology
2.
Molecules ; 20(10): 18047-65, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26437395

ABSTRACT

Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.


Subject(s)
Lichens/chemistry , Metabolomics/methods , Plant Extracts/analysis , Proton Magnetic Resonance Spectroscopy/methods , Ascomycota/chemistry , Ascomycota/classification , DNA, Ribosomal/analysis , Lichens/classification , Lichens/genetics , Phylogeny , Plant Extracts/chemistry , Principal Component Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...