Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Struct Biol ; 9: 75, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20017931

ABSTRACT

BACKGROUND: Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable. RESULTS: We have solved the crystal structure of the gene-product of locus Spy_2152 from S. pyogenes, (PDB:2fu2), and found it to comprise an anti-parallel four-helix bundle that is structurally similar to other bacteriocin immunity proteins. Sequence analyses indicate this protein to be a possible immunity protein protective against class IIa or IIb bacteriocins. However, given that S. pyogenes appears to lack any IIa pediocin-like proteins but does possess class IIb bacteriocins, we suggest this protein confers immunity to IIb-like peptides. CONCLUSIONS: Combined structural, genomic and proteomic analyses have allowed the identification and in silico characterization of a new putative immunity protein from S. pyogenes, possibly the first structure of an immunity protein protective against potential class IIb two-peptide bacteriocins. We have named the two pairs of putative bacteriocins found in S. pyogenes pyogenecin 1, 2, 3 and 4.


Subject(s)
Bacteriocins/chemistry , Streptococcus pyogenes/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Tertiary , Sequence Alignment , Sequence Analysis, Protein
2.
J Biol Chem ; 284(52): 36670-36679, 2009 Dec 25.
Article in English | MEDLINE | ID: mdl-19840941

ABSTRACT

Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all alpha-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.


Subject(s)
Bacterial Proteins/chemistry , Repressor Proteins/chemistry , Vibrio parahaemolyticus/chemistry , Amino Acid Motifs/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Operon/physiology , Phosphoenolpyruvate Sugar Phosphotransferase System/biosynthesis , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Shigella flexneri/genetics , Shigella flexneri/metabolism , Structural Homology, Protein , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism
4.
Adv Protein Chem Struct Biol ; 75: 85-105, 2008.
Article in English | MEDLINE | ID: mdl-20731990

ABSTRACT

In structural biology, the most critical issue is the availability of high-quality samples. "Structural-biology-grade" proteins must be generated in a quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance. The additional challenge for structural genomics is the need for high numbers of proteins at low cost where protein targets quite often have low sequence similarities, unknown properties and are poorly characterized. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. Where the ultimate goal of structural biology is the same-to understand the structural basis of proteins in cellular processes, the structural genomics approach is different in that the functional aspects of individual protein or family are not ignored, however, emphasis here is on the number of unique structures, covering most of the protein folding space and developing new technologies with high efficiency. At the Midwest Center Structural Genomics (MCSG), we have developed semiautomated protocols for high-throughput parallel protein purification. In brief, a protein, expressed as a fusion with a cleavable affinity tag, is purified in two immobilized metal affinity chromatography (IMAC) steps: (i) first IMAC coupled with buffer-exchange step, and after tag cleavage using TEV protease, (ii) second IMAC and buffer exchange to clean up cleaved tags and tagged TEV protease. Size exclusion chromatography is also applied as needed. These protocols have been implemented on multidimensional chromatography workstations AKTAexplorer and AKTAxpress (GE Healthcare). All methods and protocols used for purification, some developed in MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Disease (CSGID) purification pipeline, are discussed in this chapter.


Subject(s)
Chemical Fractionation/methods , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Proteins/chemistry , Proteins/isolation & purification , Models, Molecular , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...