Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 265: 291-298, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29909359

ABSTRACT

A novel bench-scale stirred bioreactor for solid-state fermentation was used to determine the effect of the stirring rate on growth and enzymes production by Trichoderma harzianum PBLA. Lab-scale static tubular bioreactors were first used to assess the effect of bioreactor diameter on heat accumulation, growth, and production of cellulases and xylanases. The increased diameters (1.8-4.2 cm) led to increases in temperature up to 36 °C (at a rate of 1.08 °C/cm), which negatively affected the growth and enzyme production. Afterward, in the bench-scale bioreactor operated at rates up to 3.0 rpm, maximum xylanases production (107 ±â€¯0.3 U/g dm) was attained at rates of 0.5 and 1.0 rpm, reaching a maximum of 34 ±â€¯0.3 °C. Cellulases production was reduced (up to 79%) due to stirring. Therefore, the production of xylanases by T. harzianum can be performed in this cross-flow stirred SSF bioreactor at rates up to 1.0 rpm, avoiding heat accumulation and damage on metabolic activity.


Subject(s)
Bioreactors , Fermentation , Trichoderma , Cellulases , Temperature
2.
Bioresour Technol ; 87(1): 81-6, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12733580

ABSTRACT

The biodegradation and mineralisation of hexadecane (HXD) by Aspergillus niger were studied in SmF and Solid-state fermentation (SSF). HXD concentrations ranging from 45 to 180 g/l (SSF) and from 20 to 80 g/l (SmF) were tested. HXD consumption was three times higher and fungal growth was up to 30 times faster in SSF than in SmF. The maximum HXD consumption in SmF was 62% (18% mineralised) and in SSF 100% (52% mineralised) for initial HXD concentrations of 20 and 45 g/l, respectively. The respiratory quotient in SmF increased (from 0.85 to 1.08) with increase in HXD concentration, while it was independent (approximately 0.68) of the initial HXD concentration in SSF. These results showed that the consumption rate and biodegradation efficiency for HXD were higher in SSF than in SmF.


Subject(s)
Alkanes/metabolism , Aspergillus niger/physiology , Environmental Pollutants/metabolism , Biodegradation, Environmental , Bioreactors , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...