Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 121(3): 453-469, 2024 03.
Article in English | MEDLINE | ID: mdl-37612878

ABSTRACT

Leishmania is the causative agent of the tropical neglected disease leishmaniasis and infects macrophages as its definitive host cell. In order to sustain and propagate infections, Leishmania parasites have to complete cycles of exit and re-infection. Yet, the mechanism driving the parasite spread to other cells remains unclear. Recent studies reported pro-inflammatory monocytes as replicative niche of Leishmania major and showed prolonged expression of IL-1ß at the site of infection, indicating an activation of the NLRP3 inflammasome and pointing toward pyroptosis as a possible mechanism of parasite spread. To address the species-specific inflammasome activation of human cells, we characterized the BLaER1 monocytes as a model for L. major infection. We found that BLaER1 monocytes support infection and activation by Leishmania parasites to the same extent as primary human macrophages. Harnessing the possibilities of this infection model, we first showed that BLaER1 GSDMD-/- cells, which carry a deletion of the pore-forming protein gasdermin D, are more resistant to pyroptotic cell death and, concomitantly, display a strongly delayed release of intracellular parasite. Using that knockout in a co-incubation assay in comparison with wild-type BLaER1 cells, we demonstrate that impairment of the pyroptosis pathway leads to lower rates of parasite spread to new host cells, thus, implicating pyroptotic cell death as a possible exit mechanism of L. major in pro-inflammatory microenvironments.


Subject(s)
Inflammasomes , Leishmania , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Pyroptosis/physiology , Phosphate-Binding Proteins/metabolism , Macrophages , Leishmania/metabolism , Interleukin-1beta/metabolism
2.
Appl Microbiol Biotechnol ; 106(1): 261-271, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34910240

ABSTRACT

Arginine auxotrophy is a metabolic defect that renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase (ADI) from Streptococcus pyogenes (SpyADI). Previously, we confirmed SpyADI susceptibility on patient-derived glioblastoma multiforme (GBM) models in vitro and in vivo. For application in patients, serum half-life of the enzyme has to be increased and immunogenicity needs to be reduced. For this purpose, we conjugated the S. pyogenes-derived SpyADI with 20 kDa polyethylene glycol (PEG20) moieties, achieving a PEGylation of seven to eight of the 26 accessible primary amines of the SpyADI. The PEGylation reduced the overall activity of the enzyme by about 50% without affecting the Michaelis constant for arginine. PEGylation did not increase serum stability of SpyADI in vitro, but led to a longer-lasting reduction of plasma arginine levels in mice. Furthermore, SpyADI-PEG20 showed a higher antitumoral capacity towards GBM cells in vitro than the native enzyme. KEY POINTS: • PEGylation has no effect on the affinity of SpyADI for arginine • PEGylation increases the antitumoral effects of SpyADI on GBM in vitro • PEGylation prolongs plasma arginine depletion by SpyADI in mice.


Subject(s)
Glioblastoma , Streptococcus pyogenes , Animals , Arginine , Humans , Hydrolases , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...