Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(14): 5455-5461, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530650

ABSTRACT

High-resolution mass spectra of natural organic matter (NOM) contain a large number of noise signals. These signals interfere with the correct molecular composition estimation during nontargeted analysis because formula-assignment programs find empirical formulas for such peaks as well. Previously proposed noise filtering methods that utilize the profile of the intensity distribution of mass spectrum peaks rely on a histogram to calculate the intensity threshold value. However, the histogram profile can vary depending on the user settings. In addition, these algorithms are not automated, so they are handled manually. To overcome the mentioned drawbacks, we propose a new algorithm for noise filtering in mass spectra. This filter is based on Gaussian Mixture Models (GMMs), a machine learning method to find the intensity threshold value. The algorithm is completely data-driven and eliminates the need to work with a histogram. It has no customizable parameters and automatically determines the noise level for each individual mass spectrum. The algorithm performance was tested on mass spectra of natural organic matter obtained by averaging a different number of microscans (transients), and the results were compared with other noise filters proposed in the literature. Finally, the effect of this noise filtering approach on the fraction of peaks with assigned formulas was investigated. It was shown that there is always an increase in the identification rate, but the magnitude of the effect changes with the number of microscans averaged. The increase can be as high as 15%.

2.
Polymers (Basel) ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475271

ABSTRACT

This article describes the one-pot microwave synthesis of silver nanoparticles (AgNPs) assisted with natural polyelectrolytes-humic substances (HS). The humic polyelectrolytes served both as chemical reductants for silver ions and as end-capping agents for AgNPs. Three commercially available sodium humates extracted from lignites and leonardite and one sodium fulvate isolated from natural brown water seeped through peat deposits were used in this study. The dynamics of the growth rate of AgNPs was characterised by UV-VIS spectroscopy by measuring the intensity of surface plasmon resonance at 420 nm. Transmission electron microscopy was used to characterise the size and morphology of AgNPs. Dynamic light scattering was used to determine size distributions of the synthesised AgNPs in the solutions. It was established that both conventional and microwave syntheses assisted with the coal humates produced small-size AgNPs in the range from 4 to 14 nm, with the maximum share of particles with sizes of (6 ± 2) nm by TEM estimates. The peat fulvate yielded much larger NPs with sizes from 10 to 50 nm by TEM estimates. DLS measurements revealed multimodal distributions of AgNPs stabilised with HS, which included both single NPs with the sizes from 5 to 15 nm, as well as their dominating aggregates with sizes from 20 to 200 nm and a smaller portion of extra-large aggregates up to 1000 nm. The given aggregates were loosely bound by humic polyelectrolyte, which prevented the coalescence of AgNPs into larger particles, as can be seen in the TEM images. The significant acceleration in the reaction time-a factor of 60 to 70-was achieved with the use of MW irradiation: from 240 min down to 210-240 s. The coal humate stabilised AgNPs showed antimicrobial properties in relation to S. aureus. A conclusion was made regarding the substantial advantages of microwave synthesis in the context of time and scaling up for the large-scale production of AgNP-HS preparations with antimicrobial properties suitable for external wound-healing applications.

3.
Toxics ; 11(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37368583

ABSTRACT

Pollution of the Arctic Ocean by potentially toxic elements (PTEs) is a current environmental problem. Humic acids (HAs) play an important role in the regulation of PTE mobility in soil and water. The permafrost thaw releases ancient organic matter (OM) with a specific molecular composition into the Arctic watersheds. This could affect the mobility of PTEs in the region. In our study, we isolated HAs from two types of permafrost deposits: the Yedoma ice complex, which contains pristine buried OM, and the alas formed in the course of multiple thaw-refreezing cycles with the most altered OM. We also used peat from the non-permafrost region as the recent environmental endmember for the evolution of Arctic OM. The HAs were characterized using 13C NMR and elemental analysis. Adsorption experiments were conducted to assess the affinity of HAs for binding Cu2+ and Ni2+. It was found that Yedoma HAs were enriched with aliphatic and N-containing structures as compared to the much more aromatic and oxidized alas and peat HAs. The adsorption experiments have revealed that the peat and alas HAs have a higher affinity for binding both ions as compared to the Yedoma HAs. The obtained data suggest that a substantial release of the OM from the Yedoma deposits due to a rapid thaw of the permafrost might increase the mobility of PTEs and their toxicity in the Arctic Ocean because of much lesser "neutralization potential".

4.
Crit Rev Anal Chem ; 53(8): 1748-1765, 2023.
Article in English | MEDLINE | ID: mdl-35212600

ABSTRACT

Fourier-transform infrared (FTIR) spectroscopy provides rapid, reliable, quantitative, and qualitative analysis of samples in different aggregation states, i.e., gases, thin films, solids, liquids, etc. However, when analyzing aqueous solutions, particular issues associated with the rather pronounced IR absorption characteristics of water appear to interfere with the solute determination. In this review, Fourier-transform infrared spectroscopic techniques and their analytical capabilities for analyzing aqueous solutions are reviewed, and highlight examples are discussed.


Subject(s)
Water , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry
5.
ACS Omega ; 7(2): 2177-2197, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071906

ABSTRACT

Granulometric fractionation as a source of additional information on organic-matter and inorganic matrix components of soils using FTIR-photoacoustic spectroscopy (FTIR-PAS) supported by attenuated-total reflection FTIR spectroscopy (ATR-FTIR) for a wide range of aggregate fractions (10-5000 µm) was used to compare the sensitivity, reproducibility, information contents, and representativity of fractionated samples. For chernozem and sod-podzolic soils and different agricultural-use chernozem samples, differences in the composition were found, manifested in normalized spectra of microaggregate fractions, with the range of 10-100 µm bearing the complete information. Most changes are observed in the soil organic matter range (1900-1340 cm-1), although these changes are slight, and in the soil-matrix region (550-300 cm-1). The latter region increases the intensity of bands corresponding to amorphous silica and clay minerals in fine fractions, while the intensity of bands attributed to quartz lattice vibrations decreases. FTIR-PAS spectra do not differ considerably at high interferometer modulation frequencies as the signal-penetration depth is comparable with particle sizes. The soil fractions below 20 µm result in the maximum sensitivity, reproducibility, and signal-to-noise ratio, showing no changes from coarser fractions by the information content and, thus, providing representative samples for analysis. The fractionation shows more differences in the sod-podzolic and chernozem soil fractions than the whole soil spectra. FTIR-PAS provides better sensitivity and reproducibility in the 4000-2000 cm-1 region and ATR-FTIR in the 2000-100 cm-1 region.

6.
Gels ; 7(4)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34940308

ABSTRACT

The methodology and results of thermal conductivity measurements by the heat-flow technique for the detonation nanodiamond suspension gels, sols, and powders of several brands in the range of nanoparticle concentrations of 2-100% w/w are discussed. The conditions of assessing the thermal conductivity of the fluids and gels (a FOX 50 heat-flow meter) with the reproducibility (relative standard deviation) of 1% are proposed. The maximum increase of 13% was recorded for the nanodiamond gels (140 mg mL-1 or 4% v/v) of the RDDM brand, at 0.687 ± 0.005 W m-1 K-1. The thermal conductivity of the nanodiamond powders is estimated as 0.26 ± 0.03 and 0.35 ± 0.04 W m-1 K-1 for the RUDDM and RDDM brands, respectively. The thermal conductivity for the aqueous pastes containing 26% v/v RUDDM is 0.85 ± 0.04 W m-1 K-1. The dignities, shortcomings, and limitations of this approach are discussed and compared with the determining of the thermal conductivity with photothermal-lens spectrometry.

7.
Biomedicines ; 9(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34944604

ABSTRACT

Natural products (e.g., polyphenols) have been used as biologically active compounds for centuries. Still, the mechanisms of biological activity of these multicomponent systems are poorly understood due to a lack of appropriate experimental techniques. The method of tritium thermal bombardment allows for non-selective labeling and tracking of all components of complex natural systems. In this study, we applied it to label two well-characterized polyphenolic compounds, peat fulvic acid (FA-Vi18) and oxidized lignin derivative (BP-Cx-1), of predominantly hydrophilic and hydrophobic character, respectively. The identity of the labeled samples was confirmed using size exclusion chromatography. Using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), key differences in the molecular composition of BP-Cx-1 and FA-Vi18 were revealed. The labeled samples ([3H]-FA-Vi18 (10 mg/kg) and [3H]-BP-Cx-1 (100 mg/kg)) were administered to female BALB/c mice intravenously (i.v.) and orally. The label distribution was assessed in blood, liver, kidneys, brain, spleen, thymus, ovaries, and heart using liquid scintillation counting. Tritium label was found in all organs studied at different concentrations. For the fulvic acid sample, the largest accumulation was observed in the kidney (Cmax 28.5 mg/kg and 5.6 mg/kg, respectively) for both routes. The organs of preferential accumulation of the lignin derivative were the liver (Cmax accounted for 396.7 and 16.13 mg/kg for i.v. and p.o. routes, respectively) and kidney (Cmax accounted for 343.3 and 17.73 mg/kg for i.v. and p.o. routes, respectively). Our results demonstrate that using the tritium labeling technique enabled successful pharmacokinetic studies on polyphenolic drugs with very different molecular compositions. It proved to be efficient for tissue distribution studies. It was also shown that the dosage of the polyphenolic drug might be lower than 10 mg/kg due to the sensitivity of the 3H detection technique.

8.
Sci Rep ; 11(1): 7410, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795703

ABSTRACT

Despite broad application of different analytical techniques for studies on organic matter of chondrite meteorites, information about composition and structure of individual compounds is still very limited due to extreme molecular diversity of extraterrestrial organic matter. Here we present the first application of isotopic exchange assisted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for analysis of alkali extractable fraction of insoluble organic matter (IOM) of the Murchison and Allende meteorites. This allowed us to determine the individual S-containing ions with different types of sulfur atoms in IOM. Thiols, thiophenes, sulfoxides, sulfonyls and sulfonates were identified in both samples but with different proportions, which contribution corroborated with the hydrothermal and thermal history of the meteorites. The results were supported by XPS and thermogravimetric analysis coupled to FTICR MS. The latter was applied for the first time for analysis of chondritic IOM. To emphasize the peculiar extraterrestrial origin of IOM we have compared it with coal kerogen, which is characterized by the comparable complexity of molecular composition but its aromatic nature and low oxygen content can be ascribed almost exclusively to degradation of biomacromolecules.

9.
Ultrason Sonochem ; 73: 105533, 2021 May.
Article in English | MEDLINE | ID: mdl-33799110

ABSTRACT

A green, scalable, and sustainable approach to prepare aqueous fullerene dispersions (AFD) C60, C70, endohedral metallofullerene Gd@C82, and their derivatives C60Cl6, C70Cl10, and supramolecular and ester-like derivatives, 10 fullerene species total, is proposed. For the first time, an immersed ultrasonic probe was used to preparing dispersions for pristine fullerenes without addends. Both ultrasound-assisted solvent-exchange and direct sonication techniques for AFD preparation using an immersed probe were tested. The average time for AFD preparation decreases 10-15 times compared to an ultrasound-bath-assisted technique, while final fullerene concentrations in AFDs remained at tens of ppm (up to 80 ppm). The aqueous dispersions showed long-term stability, a negatively charged surface with a zeta potential up to -32 mV with an average nanocluster diameter of no more than 180 nm. The total anionic and cationic compositions of samples were found by inductively coupled plasma atomic emission spectroscopy and chromatographic techniques. The highlights and challenges of using an ultrasound probe for AFD production are discussed.

10.
Molecules ; 26(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498932

ABSTRACT

Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the "core-corona" structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Oxaliplatin/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Particle Size
11.
Nanomaterials (Basel) ; 10(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322144

ABSTRACT

The qualitative analysis of nanodiamonds by FTIR spectrometry as photoacoustic (FTIR-PAS), diffuse-reflectance (DRIFT), and attenuated total reflection (ATR) modalities was evaluated for rapid and nondestructive analysis and comparison of nanodiamonds. The reproducibility and signal-gathering depth of spectra was compared. The assignment of characteristic bands showed that only six groups of bands were present in spectra of all the modalities with appropriate sensitivity: 1760 (C=O stretch, isolated carboxyl groups); 1640-1632 (H-O-H bend, liquid water); 1400-1370 (non-carboxyl C-O-H in-plane bend and CH2 deformation); 1103 (non-carboxyl C-O stretch); 1060 (in-plane C-H bend, non-aromatic hydrocarbons and carbohydrates); 940 cm-1 (out-of-plane carboxyl C-O-H bend). DRIFT provides the maximum number of bands and is capable of measuring hydrogen-bonded bands and CHx groups. ATR provides the good sensitivity for water and C-H/C-C bands in the range 2000-400 cm-1. FTIR-PAS reveals less bands than DRIFT but more intense bands than ATR-FTIR and shows the maximum sensitivity for absorption bands that do not appear in ATR-IR spectra and are expedient for supporting either DRIFT or FTIR-PAS along with depth-profiling. Thus, all three modalities are required for the full characterization of nanodiamonds surface functional groups.

12.
Ecotoxicol Environ Saf ; 206: 111193, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32890924

ABSTRACT

Rare earth elements (REEs) have received enormous attention in recent years. However, there are many gaps in the understanding of their behavior in the soil-plant system. The aim of this study is to investigate the behavior of three most common REEs (La, Ce, Nd) in the soil-plant system directly on soil samples using barley (Hordeum vulgare L.) in a vegetation experiment. We attribute the absence of significant changes in plant biomass and photosynthetic pigment content to the reduced availability of REEs in soil samples. The concentration of water-soluble forms of La, Ce and Nd didn't exceed 1 mg/kg, while the concentration of exchangeable forms varied and decreased in a row La > Ce > Nd. The transfer factor (TF) from soil to above-ground biomass was low for all three elements (<1). The stem-to-leaf TF increased with the increase in REEs concentration in soil. The concentration in plant material increased in the row Ce < Nd < La. REEs concentrations in barley leaves didn't exceed 1-3% of the corresponding element concentration in soil samples. REEs concentration in plant tissues is in close direct correlation with the REEs total concentration in soil, water-soluble and exchange forms. REEs concentration in barley leaves is 3-4 times higher than in the stems and for the group with extraneous concentration of 200 mg/kg for La, Ce and Nd was 6.20 ± 1.48, 2.10 ± 0.51, 6.90 ± 3.00 mg/kg, respectively. We show that there were no major changes in barley plants, but further study is needed of the relationship between the absorption of lanthanides by plants and the content of various forms of lanthanides in the soil.


Subject(s)
Cerium/analysis , Hordeum/drug effects , Lanthanum/analysis , Neodymium/analysis , Soil Pollutants/analysis , Soil/chemistry , Biological Transport , Biomass , Cerium/metabolism , Hordeum/growth & development , Hordeum/metabolism , Lanthanum/metabolism , Models, Theoretical , Neodymium/metabolism , Photosynthesis/drug effects , Soil Pollutants/metabolism
13.
Photoacoustics ; 18: 100162, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551228

ABSTRACT

FTIR photoacoustic spectroscopy was used to approach inorganic matrix components and organic-matter constituents of chernozem size fractions (1-5000 µm, by dry sieving) with a different history of use (from intact steppe to permanent bare fallow, a continuous long-term field experiment). The conditions of FTIR photoacoustic measurements in continuous-scan modes were compared with attenuated total reflection measurements, the advantages of photoacoustic measurements resulting from a higher intensity of the incident radiation and signal-generating volume were discussed. Overtone peaks of quartz as a soil matrix component at 2000-1700 cm-1 were selected as a possible internal-standard (guide) bands for the comparison of photoacoustic spectra. For different land-use samples, differences in the composition were found, which are differently manifested in normalized spectra of size fractions, with millimeter-size, 20-100 µm, and silt fraction bearing the maximum information.

14.
Photoacoustics ; 17: 100151, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956483

ABSTRACT

Review sums up the application of photoacoustic and photothermal spectroscopies for the analysis and characterization of soils and soil organic matter and discusses the outlooks in this area.

15.
Materials (Basel) ; 12(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067714

ABSTRACT

Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles' size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 µm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous phase in as-prepared particles into nanocrystalline anatase and/or rutile. Transmission electron microscopy (TEM) study of the lamellae, cut out from spherical particles using focused ion beam (FIB), revealed that as-synthesized microspheres are non-hollow, homogeneous, and crystallize throughout the whole volume of the particle. The spherical particles possess photoprotective properties; the highest sun protection factor (SPF) was observed for amorphous microspheres.

16.
Front Plant Sci ; 10: 413, 2019.
Article in English | MEDLINE | ID: mdl-31024589

ABSTRACT

Iron deficiency is a frequent problem for many crops, particularly in calcareous soils and iron humates are commonly applied in the Mediterranean basin in spite of their lesser efficiency than iron synthetic chelates. Development and application of new fertilizers using nanotechnology are one of the potentially effective options of enhancing the iron humates, according to the sustainable agriculture. Particle size, pH, and kinetics constrain the iron humate efficiency. Thus, it is relevant to understand the iron humate mechanism in the plant-soil system linking their particle size, characterization and iron distribution in plant and soil using 57Fe as a tracer tool. Three hybrid nanomaterials (F, S, and M) were synthesized as iron-humic nanofertilizers (57Fe-NFs) from leonardite potassium humate and 57Fe used in the form of 57Fe(NO3)3 or 57Fe2(SO4)3. They were characterized using Mössbauer spectroscopy, X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS), transmission electron microscopy (TEM) and tested for iron availability in a calcareous soil pot experiment carried out under growth chamber conditions. Three doses (35, 75, and 150 µmol pot-1) of each iron-humic material were applied to soybean iron deficient plants and their iron nutrition contributions were compared to 57FeEDDHA and leonardite potassium humate as control treatments. Ferrihydrite was detected as the main structure of all three 57Fe-NFs and the plants tested with iron-humic compounds exhibited continuous long-term statistically reproducible iron uptake and showed high shoot fresh weight. Moreover, the 57Fe from the humic nanofertilizers remained available in soil and was detected in soybean pods. The Fe-NFs offers a natural, low cost and environmental option to the traditional iron fertilization in calcareous soils.

17.
Ecotoxicol Environ Saf ; 167: 20-28, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30292972

ABSTRACT

Lanthanum (La) and cerium (Ce) are one of the most abundant rare earth elements (REEs). In spite of quite extensive studying of the effects of these lanthanides on biota, some contradictions remain in the results. Also little is known about the effect of lanthanum and cerium on plant cells and their mitotic cycle, especially in soils. In this study, the effects of La and Ce in solutions and soil samples on root growth, mitotic index (MI) and frequency of aberrant cells (FAC) were assayed using one of the most convenient objects for testing of cytotoxicity - onion Allium cepa L. Bulbs were germinated on media containing La and Ce in concentrations 0-200 mg/l and 0-50 mg/l respectively for solutions and 0-200 mg/kg for soil samples. After 5 days of germination in solutions, a significant decrease in root elongation and MI in apical meristem cells are shown. We have also observed an increase in the number of cells with aberrations at 50 mg/l La and Ce concentration. The number of observed stickiness and disturbed metaphase has increased significantly. Soil samples turned out to be less toxic compared to the solutions probably due to the decreased availability of REEs. In spite of this, significant cytotoxicity of soil samples containing the highest concentration of La and Ce (200 mg/kg) is observed. The latter may indicate the importance of considering the cytotoxicity of soils containing high lanthanides concentrations - in extraction and production areas and actively fertilized fields.


Subject(s)
Cerium/toxicity , Lanthanum/toxicity , Soil/chemistry , Toxicity Tests , Meristem/drug effects , Meristem/metabolism , Metals, Rare Earth/toxicity , Onions , Plant Cells/drug effects , Plant Cells/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Soil Pollutants
18.
J Agric Food Chem ; 65(51): 11157-11169, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29206449

ABSTRACT

Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).


Subject(s)
Fertilizers/analysis , Humic Substances/analysis , Hydroxides/chemistry , Iron/chemistry , Iron/metabolism , Nanoparticles/chemistry , Triticum/metabolism , Biological Availability , Hydroxides/metabolism , Nanoparticles/metabolism , Particle Size , Triticum/growth & development , X-Ray Diffraction
19.
Structure ; 25(10): 1549-1561.e5, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28943336

ABSTRACT

TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through ß sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a "molecular pencil sharpener": unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Bacteriocins/metabolism , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/chemistry , Models, Molecular , Peptides/metabolism , Protein Conformation , Substrate Specificity
20.
Talanta ; 174: 206-213, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738569

ABSTRACT

Determination of chromophores of various classes-rosaniline (fuchsine), cyanidin-3-O-glucoside, tris(1,10-phenanthroline) iron(II), and phenol red - in their concentrated solutions near their solubility limits is performed with the optoacoustic technique for optically dense solutions; light-absorption coefficients of samples range from 0.5 to 500cm-1. The assessment of these substances in organo-aqueous and organic solvents is possible up to ca. 0.1molL-1. Characteristic stability and rate constants of the chelation of iron(II) with 1,10-phenanthroline are determined. It was found that turbidities up to 200 FTU and dynamic viscosities up to 20mPas do not affect the determination. The determination of total anthocyanins (as cyanidin-3-O-glucoside) in bilberry and sweet-cherry juices agrees with the reference spectrophotometric method and demonstrates the possibilities of the optoacoustic technique for the analysis of real samples without dilution and with almost no sample preparation.


Subject(s)
Acoustics , Anthocyanins/analysis , Chemical Phenomena , Optical Phenomena , Absorption, Physicochemical , Anthocyanins/chemistry , Calibration , Color , Food Analysis , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...