Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37629868

ABSTRACT

In many industrial processes that include fluid flow, cavitation erosion of different engineering structures (pumps, turbines, water levels, valves, etc.) during their operation is expected. Metallic, ceramic, and composite materials are usual candidates considered for application in such extreme conditions. In this study, the idea is to synthesize refractory ceramic material based on talc with the addition of zeolite for utilization as protective coatings in cavitating conditions. Two talc-based refractories with zeolites from two Serbian deposits were produced. The behaviors of the samples in simulated cavitation conditions were examined by an advanced non-destructive methodology consisting of monitoring mass loss and surface degradation using image analysis compiled with principal component analysis (PCA), interior degradation by ultrasonic measurements, and the microstructure by a scanning electron microscope (SEM). Lower mass loss, surface degradation level, and modeled strength decrease indicated better cavitation resistance of the sample with Igros zeolite, whereby measured strength values validated the model. For the chosen critical strength, the critical cavitation period as well as critical morphological descriptors, Area and Diameter (max and min), were determined. A Young's elasticity modulus decrease indicated that surface damage influence progressed towards interior of the material. It can be concluded that the proposed methodology approach is efficient and reliable in predicting the materials' service life in extreme conditions.

2.
Environ Monit Assess ; 188(3): 160, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26875074

ABSTRACT

In this work, a new method for the quantification of methyl violet cationic dye sorption onto SBA-15 mesoporous silica was developed. This method related the intensity of coloration of SBA-15 samples (after reached equilibrium sorption) within dye concentration in aqueous solution using Image-Pro Plus software. The sorption process of methyl violet dye onto SBA-15 was analyzed varying different initial parameters (dye concentration, mass of sorbent, pH of dye solution, and contact sorption time). SBA-15 proved as efficient sorbent for removal of methyl violet dye in contact time of 5 min, with maximum percentage of dye removal 99% at pH 8. The results obtained from Image-Pro Plus showed to be in good agreement with the sorption parameters obtained by UV/Vis spectroscopy, which has been the most commonly used instrument for quantification of dye sorption. The image analysis method proved well prediction of dye concentrations with maximum relative error of 1.83%. The advantages of this method are low cost and reliable quantitative evaluation with minimum of time.


Subject(s)
Adsorption , Coloring Agents/chemistry , Silicon Dioxide/chemistry , Waste Disposal, Fluid/methods , Environmental Monitoring , Industrial Waste , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...