Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0301047, 2024.
Article in English | MEDLINE | ID: mdl-38870116

ABSTRACT

Currently, the primary factor indicating the necessity of an operation for an abdominal aortic aneurysm (AAA) is the diameter at its widest part. However, in practice, a large number of aneurysm ruptures occur before reaching a critical size. This means that the mechanics of aneurysm growth and remodeling have not been fully elucidated. This study presents a novel method for assessing the elastic properties of an aneurysm using an ultrasound technique based on tracking the oscillations of the vascular wall as well as the inner border of the thrombus. Twenty nine patients with AAA and eighteen healthy volunteers were considered. The study presents the stratification of a group of patients according to the elastic properties of the aneurysm, depending on the relative volume of intraluminal thrombus masses. Additionally, the neural network analysis of CT angiography images of these patients shows direct (r = 0.664271) correlation with thrombus volume according to ultrasound data, the reliability of the Spearman correlation is p = 0.000215. The use of finite element numerical analysis made it possible to reveal the mechanism of the negative impact on the AAA integrity of an asymmetrically located intraluminal thrombus. The aneurysm itself is considered as a complex structure consisting of a wall, intraluminal thrombus masses, and areas of calcification. When the thrombus occupies > 70% of the lumen of the aneurysm, the deformations of the outer and inner surfaces of the thrombus have different rates, leading to tensile stresses in the thrombus. This poses a risk of its detachment and subsequent thromboembolism or the rupture of the aneurysm wall. This study is the first to provide a mechanistic explanation for the effects of an asymmetrical intraluminal thrombus in an abdominal aortic aneurysm. The obtained results will help develop more accurate risk criteria for AAA rupture using non-invasive conventional diagnostic methods.


Subject(s)
Aortic Aneurysm, Abdominal , Thrombosis , Humans , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/complications , Thrombosis/diagnostic imaging , Thrombosis/pathology , Male , Female , Aged , Computed Tomography Angiography , Ultrasonography , Middle Aged , Models, Cardiovascular , Aged, 80 and over , Models, Theoretical , Finite Element Analysis
2.
Ambio ; 50(11): 1975-1990, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34244968

ABSTRACT

Changes in climate, land-use and pollution are having disproportionate impacts on ecosystems and biodiversity of arctic and mountain ecosystems. While these impacts are well-documented for many areas of the Arctic and alpine regions, some isolated and inaccessible mountain areas are poorly studied. Furthermore, even in well-studied regions, assessments of biodiversity and species responses to environmental change are biased towards vascular plants and cryptogams, particularly bryophytes are far less represented. This paper aims to document the environments of the remote and inaccessible Altai-Sayan mountain mires and particularly their bryofloras where threatened species exist and species new to the regional flora are still being found. As these mountain mires are relatively inaccessible, changes in drivers of change and their ecosystem and biodiversity impacts have not been monitored. However, the remoteness of the mires has so far protected them and their species. In this study, we describe the mires, their bryophyte species and the expected impacts of environmental stressors to bring attention to the urgency of documenting change and conserving these pristine ecosystems.


Subject(s)
Biodiversity , Ecosystem , Arctic Regions , Climate , Climate Change , Siberia
3.
Ambio ; 50(11): 1926-1952, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34115347

ABSTRACT

Biological diversity is the basis for, and an indicator of biosphere integrity. Together with climate change, its loss is one of the two most important planetary boundaries. A halt in biodiversity loss is one of the UN Sustainable Development Goals. Current changes in biodiversity in the vast landmass of Siberia are at an initial stage of inventory, even though the Siberian environment is experiencing rapid climate change, weather extremes and transformation of land use and management. Biodiversity changes affect traditional land use by Indigenous People and multiple ecosystem services with implications for local and national economies. Here we review and analyse a large number of scientific publications, which are little known outside Russia, and we provide insights into Siberian biodiversity issues for the wider international research community. Case studies are presented on biodiversity changes for insect pests, fish, amphibians and reptiles, birds, mammals and steppe vegetation, and we discuss their causes and consequences.


Subject(s)
Biodiversity , Ecosystem , Animals , Birds , Climate Change , Conservation of Natural Resources , Humans , Siberia
4.
Ambio ; 50(11): 2038-2049, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33677811

ABSTRACT

Peatlands cover 3% of the land, occur in 169 countries, and have-by sequestering 600 Gt of carbon-cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research. The World's largest peatland, the Great Vasyugan Mire in West-Siberia, forms the border between the Taiga and the Forest-Steppe biomes and harbours rare species and mire types and globally unique self-organizing patterns. Current oil and gas exploitation may arguably be largely phased out by 2050, which will pave the way for a stronger focus on the mire's role in buffering climate change, maintaining ecosystem diversity, and providing other ecosystem services. Relevant new research lines will benefit from the extensive data sets that earlier studies have gathered for other purposes. Its globally unique character as the 'largest life form on land' qualifies the Great Vasyugan Mire in its entirety to be designated as a UNESCO World Heritage Site and a Ramsar Wetland of International Importance.


Subject(s)
Ecosystem , Soil , Climate Change , Forests , Wetlands
5.
Mutat Res ; 791-792: 49-60, 2016.
Article in English | MEDLINE | ID: mdl-27648955

ABSTRACT

A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium ß-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity.


Subject(s)
Beta Particles/adverse effects , DNA, Ribosomal/blood , DNA, Satellite/blood , Gamma Rays/adverse effects , Occupational Exposure/adverse effects , Radiation Exposure/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA Breaks, Double-Stranded , DNA, Ribosomal/genetics , DNA, Satellite/genetics , Dose-Response Relationship, Radiation , GC Rich Sequence , Humans , Middle Aged , Neutrons , Occupational Exposure/analysis , Radiation Dosage , Radiation Exposure/analysis , Real-Time Polymerase Chain Reaction , Russia , Tandem Repeat Sequences/genetics , Tritium , Young Adult
6.
Carbohydr Polym ; 89(4): 1088-94, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-24750918

ABSTRACT

To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics.


Subject(s)
Chitosan/analogs & derivatives , DNA , Drug Carriers , Plasmids , Transfection/methods , Animals , COS Cells , Chitosan/chemistry , Chitosan/pharmacology , Chlorocebus aethiops , DNA/chemistry , DNA/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Plasmids/chemistry , Plasmids/pharmacology
7.
Bioconjug Chem ; 22(3): 338-45, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21332206

ABSTRACT

A self-assembling sensor for oleic acid has been developed. The sensor consists of a self-assembling fluorescent dye labeled BSA and quantum dots CdSe/ZnS capped with 3-mercaptopropionic acid. The detection limit of the new sensor is 10-1000 nM. The influence of the quantum dot size on the FRET efficiency in the course of the interaction of the sensor system with the analyte has been studied. The pH dependence, aggregation stability. and electrophoretic properties of the sensor have been examined. The data suggest a new approach for the development of nanoscale FRET-based sensors operating effectively due to unique fluorescent properties of quantum dots as well as due to selective protein-ligand interactions.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer , Limit of Detection , Oleic Acid/analysis , Quantum Dots , Animals , Cattle , Ligands , Oleic Acid/chemistry , Serum Albumin, Bovine/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...