Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38674458

ABSTRACT

Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits.


Subject(s)
Chickens , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Chickens/genetics , Quantitative Trait Loci , Breeding , Russia , Whole Genome Sequencing/methods
2.
Genes (Basel) ; 15(3)2024 02 25.
Article in English | MEDLINE | ID: mdl-38540354

ABSTRACT

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Subject(s)
Coturnix , Genome-Wide Association Study , Male , Animals , Coturnix/genetics , Polymorphism, Single Nucleotide/genetics , Meat/analysis , Body Weight/genetics
3.
Animals (Basel) ; 14(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38254427

ABSTRACT

The aim of the current study was to assess the female metabolic rate and test the hypothesis that there is a relationship between the egg productivity of Japanese quails from eight breeds and their morphometric, or growth, parameters. Parameters measured were body weight (B), volume (V), and surface area (S), as well as the metabolism level expressed by the ratio S/V. The collected egg performance traits were as follows: the number of eggs produced (N), the average egg weight (W), and the total egg mass (M) (i.e., N multiplied by W). To measure the S and V values, a novel technique was developed that takes into account the similarity of the quail's body to an ellipsoid. An analysis of the relationships between productivity indicators allowed us to introduce a new index called the metabolic index, B·S/V, based on all three main growth parameters in quails. Using the values of this index, we were then able to judge indirectly the level of quails' egg productivity. We went on to assess the N, W, and M values, not only depending on the size of the bird's growth parameters but also according to the degree of their changes during quail growth. These changes were expressed as the slope angles of trend lines describing the growth process data. This approach produced more accurate results for predicting the egg productivity in terms of W and M.

4.
Animals (Basel) ; 13(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003057

ABSTRACT

Traces of long-term artificial selection can be detected in genomes of domesticated birds via whole-genome screening using single-nucleotide polymorphism (SNP) markers. This study thus examined putative genomic regions under selection that are relevant to the development history, divergence and phylogeny among Japanese quails of various breeds and utility types. We sampled 99 birds from eight breeds (11% of the global gene pool) of egg (Japanese, English White, English Black, Tuxedo and Manchurian Golden), meat (Texas White and Pharaoh) and dual-purpose (Estonian) types. The genotyping-by-sequencing analysis was performed for the first time in domestic quails, providing 62,935 SNPs. Using principal component analysis, Neighbor-Net and Admixture algorithms, the studied breeds were characterized according to their genomic architecture, ancestry and direction of selective breeding. Japanese and Pharaoh breeds had the smallest number and length of homozygous segments indicating a lower selective pressure. Tuxedo and Texas White breeds showed the highest values of these indicators and genomic inbreeding suggesting a greater homozygosity. We revealed evidence for the integration of genomic and performance data, and our findings are applicable for elucidating the history of creation and genomic variability in quail breeds that, in turn, will be useful for future breeding improvement strategies.

5.
Biology (Basel) ; 12(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508409

ABSTRACT

A study for genomic variation that may reflect putative selective signaling and be associated with economically important traits is instrumental for obtaining information about demographic and selection history in domestic animal species and populations. A rich variety of the Russian chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can derive implications from their genome architecture and selective footprints for their subsequent breeding and practical efficient exploitation. In the present work, whole genome genotyping of 19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50 K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens developed in the 17th-19th centuries, as well as eight Russian chicken breeds, including the Russian White (RW), created in the 20th century on the basis of improving local chickens using breeds of foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL), were used along with other breeds representing the Russian gene pool. The characteristics of the genetic diversity and phylogenetic relationships of the native breeds of chickens were represented in comparison with foreign breeds. It was established that the studied native breeds demonstrate their own genetic structure that distinguishes them from foreign breeds, and from each other. For example, we previously made an assumption on what could cause the differences between two RW populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian breed. A significant contribution of the gene pool of native breeds to the global genetic diversity of chickens was shown. In general, based on the results of a multilateral survey of this sample of breeds, it can be concluded that phylogenetic relationships based on their genetic structure and variability robustly reflect the known, previously postulated and newly discovered patterns of evolution of native chickens. The results herein presented will aid selection and breeding work using this gene pool.

6.
J Anim Sci Biotechnol ; 14(1): 35, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36829208

ABSTRACT

BACKGROUND: The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS: Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION: Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.

7.
Animals (Basel) ; 13(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36611792

ABSTRACT

Negative heterosis can occur on different economically important traits, but the exact biological mechanisms of this phenomenon are still unknown. The present study focuses on determining the genetic factors associated with negative heterosis in interspecific hybrids between domestic sheep (Ovis aries) and argali (Ovis ammon). One locus (rs417431015) associated with viability and two loci (rs413302370, rs402808951) associated with meat productivity were identified. One gene (ARAP2) was prioritized for viability and three for meat productivity (PDE2A, ARAP1, and PCDH15). The loci associated with meat productivity were demonstrated to fit the overdominant inheritance model and could potentially be involved int negative heterosis mechanisms.

8.
Biology (Basel) ; 10(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34571753

ABSTRACT

Comparison of genomic footprints in chicken breeds with different selection history is a powerful tool in elucidating genomic regions that have been targeted by recent and more ancient selection. In the present work, we aimed at examining and comparing the trajectories of artificial selection in the genomes of the native egg-type Russian White (RW) and meat-type White Cornish (WC) breeds. Combining three different statistics (top 0.1% SNP by FST value at pairwise breed comparison, hapFLK analysis, and identification of ROH island shared by more than 50% of individuals), we detected 45 genomic regions under putative selection including 11 selective sweep regions, which were detected by at least two different methods. Four of such regions were breed-specific for each of RW breed (on GGA1, GGA5, GGA8, and GGA9) and WC breed (on GGA1, GGA5, GGA8, and GGA28), while three remaining regions on GGA2 (two sweeps) and GGA3 were common for both breeds. Most of identified genomic regions overlapped with known QTLs and/or candidate genes including those for body temperatures, egg productivity, and feed intake in RW chickens and those for growth, meat and carcass traits, and feed efficiency in WC chickens. These findings were concordant with the breed origin and history of their artificial selection. We determined a set of 188 prioritized candidate genes retrieved from the 11 overlapped regions of putative selection and reviewed their functions relative to phenotypic traits of interest in the two breeds. One of the RW-specific sweep regions harbored the known domestication gene, TSHR. Gene ontology and functional annotation analysis provided additional insight into a functional coherence of genes in the sweep regions. We also showed a greater candidate gene richness on microchromosomes relative to macrochromosomes in these genomic areas. Our results on the selection history of RW and WC chickens and their key candidate genes under selection serve as a profound information for further conservation of their genomic diversity and efficient breeding.

9.
Genes (Basel) ; 12(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806625

ABSTRACT

Despite their economic value, sheep remain relatively poorly studied animals in terms of the number of known loci and genes associated with commercially important traits. This gap in our knowledge can be filled in by performing new genome-wide association studies (GWAS) or by re-analyzing previously documented data using novel powerful statistical methods. This study is focused on the search for new loci associated with meat productivity and carcass traits in sheep. With a multivariate approach applied to publicly available GWAS results, we identified eight novel loci associated with the meat productivity and carcass traits in sheep. Using an in silico follow-up approach, we prioritized 13 genes in these loci. One of eight novel loci near the FAM3C and WNT16 genes has been replicated in an independent sample of Russian sheep populations (N = 108). The novel loci were added to our regularly updated database increasing the number of known loci to more than 140.


Subject(s)
Genome-Wide Association Study/veterinary , Quantitative Trait Loci , Sheep/genetics , Animals , Computer Simulation , Cytokines/genetics , Meat Products , Multivariate Analysis , Phenotype , Wnt Proteins/genetics
10.
Arch Anim Breed ; 62(2): 403-411, 2019.
Article in English | MEDLINE | ID: mdl-31807651

ABSTRACT

The efficiency of natural and artificial selection is critically dependent on the recombination rate. However, interbreed and individual variation in recombination rate in poultry remains unknown. Conventional methods of analysis of recombination such as genetic linkage analysis, sperm genotyping and chiasma count at lampbrush chromosomes are expensive and time-consuming. In this study, we analyzed the number and distribution of recombination nodules in spermatocytes of the roosters of six chicken breeds using immunolocalization of key proteins involved in chromosome pairing and recombination. We revealed significant effects of breed ( R 2 = 0.17 ; p < 0.001 ) and individual ( R 2 = 0.28 ; p < 0.001 ) on variation in the number of recombination nodules. Both interbreed and individual variations in recombination rate were almost entirely determined by variation in recombination density on macrochromosomes, because almost all microchromosomes in each breed had one recombination nodule. Despite interbreed differences in the density of recombination nodules, the patterns of their distribution along homologous chromosomes were similar. The breeds examined in this study showed a correspondence between the age of the breed and its recombination rate. Those with high recombination rates (Pervomai, Russian White and Brahma) are relatively young breeds created by crossing several local breeds. The breeds displaying low recombination rate are ancient local breeds: Cochin (Indo-China), Brown Leghorn (Tuscany, Italy) and Russian Crested (the European part of Russia).

11.
Arch Anim Breed ; 62(2): 579-583, 2019.
Article in English | MEDLINE | ID: mdl-31893215

ABSTRACT

Identification of quantitative trait loci (QTLs) and candidate genes that affect growth intensity is a prerequisite for the marker-assisted selection of economically important traits. The number of QTL studies on sheep is relatively small in comparison to those on cattle and pigs. The current QTL sheep database - Sheep QTLdb - contains information on 1658 QTLs for 225 different traits. A few genes and markers associated with growth, carcass and meat productivity traits have been reported. The information about QTLs from the Sheep QTLdb cannot be directly used in marker-assisted selection due to the lack of essential information such as effective and reference alleles, the effect direction etc., and it requires manual curation and validation. In this study we performed a comprehensive search for QTLs focusing on single nucleotide polymorphisms (SNPs) associated with growth and meat traits in sheep. The database contains information about 156 SNP-trait associations (123 unique SNPs) and a list of 165 associated genes. The updated information is freely available at https://github.com/Defrag1236/Ovines_2018 (last access: 18 September 2019). This information can be useful for further association studies and preliminary estimation of genetic variability for economically important traits in different breeds.

12.
Theriogenology ; 82(8): 1154-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25212395

ABSTRACT

The available evidence points to participation of PRL in regulation of mammalian oocyte maturation. The aim of the present study was to characterize pathways of PRL action on bovine oocytes. We analyzed (1) the presence of the PRL receptor and its mRNA isoforms in oocytes and cumulus cells; (2) the effect of PRL on meiosis resumption and the role of cumulus cells, the NO/NO synthase system, protein kinase C, and tyrosine kinases in this effect; and (3) PRL effects in the presence of gonadotropins on the developmental capacity of cumulus-free and cumulus-enclosed oocytes. The transcript and protein expression of the PRL receptor in the cells were detected by reverse transcription polymerase chain reaction and immunocytochemistry, respectively. The nuclear status of oocytes was assessed after culture of cumulus-oocyte complexes (COCs) and denuded oocytes (DOs) with or without PRL (5-500 ng/mL) for 7, 14, or 24 hours. Besides, DOs were incubated for 7 hours in the absence or the presence of PRL (50 ng/mL) and/or L-NAME (an inhibitor of NO synthase), genistein (an inhibitor of tyrosine kinases), or calpostin C (a protein kinase C inhibitor). After IVM in 2 different systems containing PRL (50 ng/mL) and/or gonadotropic hormones, a part of oocytes underwent IVF and IVC and the embryo development was tracked until the blastocyst stage. Messenger RNA of long and short isoforms of the PRL receptor was revealed in both oocytes and cumulus cells. Immunocytochemistry confirmed the presence of the PRL receptor in oocytes and the cumulus investment. In the absence of gonadotropins (system 1), PRL retarded meiosis resumption in DOs but not in cumulus-enclosed oocytes, with this effect being short term, dose dependent, suppressed by L-NAME and genistein, and unaffected by calpostin. In systems containing gonadotropins, PRL did not affect nuclear maturation and the cleavage rate of cumulus-free and cumulus-enclosed oocytes. However, in the case of COCs, it raised the blastocyst yield both in system 2 (from 20.5%-40.9%, P < 0.01) and in system 3 (from 21.7%-33.9%, P < 0.05). The findings show for the first time the functioning of the direct pathway of PRL signaling into bovine oocytes, as confirmed by the expression of receptors of PRL and its direct meiosis-retarding effect involving activation of tyrosine kinases and NO synthase. Furthermore, this is the first demonstration that the beneficial effect of PRL on the oocyte developmental capacity is achieved via cumulus cells containing PRL receptors.


Subject(s)
Cattle , Cumulus Cells/physiology , Oocytes/drug effects , Prolactin/pharmacology , Animals , Cells, Cultured , Cumulus Cells/chemistry , Embryonic Development , Female , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Meiosis/drug effects , Nitric Oxide/physiology , Nitric Oxide Synthase/metabolism , Oocytes/chemistry , Protein Kinase C/metabolism , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/analysis , Receptors, Prolactin/analysis , Receptors, Prolactin/genetics , Signal Transduction
13.
J Biol Chem ; 289(29): 20158-69, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24878957

ABSTRACT

The distinguishing feature of self-inactivating (SIN) retroviral vectors is the deletion of the enhancer/promoter sequences in the U3 region of the 3' long terminal repeat. This design is used to overcome transcriptional interference and prevent downstream transcription from the 3' long terminal repeat. SIN vectors were derived from a number of different retroviruses. Studies of SIN vectors show that extensive U3 deletions in HIV-based vectors do not alter viral titers or the in vitro and in vivo properties of the vectors. However, deletion of the U3 sequences in γ- and α-retroviruses correlates with defects in 3' RNA processing and reduces viral titers by >10-fold. Here, we studied the steps in the retroviral life cycle that are affected by the deletion of sequences in the 3' U3 region of Moloney murine leukemia virus-derived retroviral vectors. The results show that the amounts of both full-length and internal RNA transcripts of U3-minus vectors are reduced in the nuclei of transfected cells, an effect that is probably due to a general defect in 3' RNA processing. Furthermore, full-length RNA transcripts were also defective in terms of nuclear export. This defect was complemented by transferring the U3 region to another position within the retroviral vector, indicating that the U3 region contains position-independent cis-acting sequences that are required for the transport of full-length viral transcripts. The results also suggest that the leader region of Moloney murine leukemia virus contains inhibitory/regulatory sequences, which prevent export and mediate nuclear retention of full-length viral RNA.


Subject(s)
Moloney murine leukemia virus/genetics , Terminal Repeat Sequences , Active Transport, Cell Nucleus , Animals , Enhancer Elements, Genetic , Gene Expression , Genetic Vectors , Mice , Moloney murine leukemia virus/metabolism , NIH 3T3 Cells , Promoter Regions, Genetic , RNA Processing, Post-Transcriptional , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Deletion , Transfection , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...