Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 368(6492)2020 05 15.
Article in English | MEDLINE | ID: mdl-32409444

ABSTRACT

De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines. Here, we present a protein design algorithm called TopoBuilder, with which we engineered epitope-focused immunogens displaying complex structural motifs. In both mice and nonhuman primates, cocktails of three de novo-designed immunogens induced robust neutralizing responses against the respiratory syncytial virus. Furthermore, the immunogens refocused preexisting antibody responses toward defined neutralization epitopes. Overall, our design approach opens the possibility of targeting specific epitopes for the development of vaccines and therapeutic antibodies and, more generally, will be applicable to the design of de novo proteins displaying complex functional motifs.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Computational Biology/methods , Immunodominant Epitopes/chemistry , Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Amino Acid Motifs , Humans , Immunodominant Epitopes/immunology , Protein Conformation , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
3.
Nat Biotechnol ; 38(4): 426-432, 2020 04.
Article in English | MEDLINE | ID: mdl-32015549

ABSTRACT

Approaches to increase the activity of chimeric antigen receptor (CAR)-T cells against solid tumors may also increase the risk of toxicity and other side effects. To improve the safety of CAR-T-cell therapy, we computationally designed a chemically disruptable heterodimer (CDH) based on the binding of two human proteins. The CDH self-assembles, can be disrupted by a small-molecule drug and has a high-affinity protein interface with minimal amino acid deviation from wild-type human proteins. We incorporated the CDH into a synthetic heterodimeric CAR, called STOP-CAR, that has an antigen-recognition chain and a CD3ζ- and CD28-containing endodomain signaling chain. We tested STOP-CAR-T cells specific for two antigens in vitro and in vivo and found similar antitumor activity compared to second-generation (2G) CAR-T cells. Timed administration of the small-molecule drug dynamically inactivated the activity of STOP-CAR-T cells. Our work highlights the potential for structure-based design to add controllable elements to synthetic cellular therapies.


Subject(s)
Receptors, Antigen, T-Cell/chemistry , Receptors, Chimeric Antigen/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes/drug effects , Cell Engineering , Cells, Cultured , Humans , Immunotherapy, Adoptive , Jurkat Cells , Lymphocyte Activation/drug effects , PC-3 Cells , Protein Binding , Protein Engineering , Protein Multimerization , Receptors, Antigen, T-Cell/antagonists & inhibitors , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/antagonists & inhibitors , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
PLoS Biol ; 17(2): e3000164, 2019 02.
Article in English | MEDLINE | ID: mdl-30789898

ABSTRACT

Throughout the last several decades, vaccination has been key to prevent and eradicate infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influenza, dengue, and others) have resisted vaccine development efforts, largely because of the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling of human B cells often reveals potent neutralizing antibodies that emerge from natural infection, but these specificities are generally subdominant (i.e., are present in low titers). A major challenge for next-generation vaccines is to overcome established immunodominance hierarchies and focus antibody responses on crucial neutralization epitopes. Here, we show that a computationally designed epitope-focused immunogen presenting a single RSV neutralization epitope elicits superior epitope-specific responses compared to the viral fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies targeting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that epitope-focused immunogens can boost subdominant neutralizing antibody responses in vivo and reshape established antibody hierarchies.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Epitopes/chemistry , Receptors, Antigen, B-Cell/immunology , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/chemistry , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cloning, Molecular , Computer-Aided Design , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunization/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Palivizumab/chemistry , Palivizumab/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/biosynthesis , Respiratory Syncytial Virus Vaccines/genetics , Structural Homology, Protein , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
5.
PLoS Comput Biol ; 14(11): e1006623, 2018 11.
Article in English | MEDLINE | ID: mdl-30452434

ABSTRACT

The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.


Subject(s)
Computational Biology/methods , Protein Engineering/methods , Proteins/chemistry , Amino Acid Motifs , Antibodies, Monoclonal/chemistry , Catalysis , Epitopes/chemistry , Humans , Models, Molecular , Protein Binding , Protein Folding , Software
6.
J Biol Chem ; 287(51): 42533-44, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23093404

ABSTRACT

The class 1 equilibrative glucose transporters GLUT1 and GLUT4 are structurally similar but catalyze distinct modes of transport. GLUT1 exhibits trans-acceleration, in which the presence of intracellular sugar stimulates the rate of unidirectional sugar uptake. GLUT4-mediated uptake is unaffected by intracellular sugar. Using homology-scanning mutagenesis in which domains of GLUT1 are substituted with equivalent domains from GLUT4 and vice versa, we show that GLUT1 transmembrane domain 6 is both necessary and sufficient for trans-acceleration. This region is not directly involved in GLUT1 binding of substrate or inhibitors. Rather, transmembrane domain 6 is part of two putative scaffold domains, which coordinate membrane-spanning amphipathic helices that form the sugar translocation pore. We propose that GLUT1 transmembrane domain 6 restrains import when intracellular sugar is absent by slowing transport-associated conformational changes.


Subject(s)
Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/metabolism , Mutagenesis/genetics , Sequence Homology, Amino Acid , Amino Acid Sequence , Biocatalysis , Biological Transport , Carbohydrate Metabolism , Cell Membrane/metabolism , Deoxyglucose/metabolism , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/metabolism , HEK293 Cells , Humans , Kinetics , Models, Biological , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Tertiary , Sequence Alignment , Structure-Activity Relationship
7.
Sci Rep ; 2: 629, 2012.
Article in English | MEDLINE | ID: mdl-22953050

ABSTRACT

Successful immunity requires that a limited pool of αß T-cell receptors (TCRs) provide cover for a vast number of potential foreign peptide antigens presented by 'self' major histocompatibility complex (pMHC) molecules. Structures of unligated and ligated MHC class-I-restricted TCRs with different ligands, supplemented with biophysical analyses, have revealed a number of important mechanisms that govern TCR mediated antigen recognition. HA1.7 TCR binding to the influenza hemagglutinin antigen (HA(306-318)) presented by HLA-DR1 or HLA-DR4 represents an ideal system for interrogating pMHC-II antigen recognition. Accordingly, we solved the structure of the unligated HA1.7 TCR and compared it to both complex structures. Despite a relatively rigid binding mode, HA1.7 T-cells could tolerate mutations in key contact residues within the peptide epitope. Thermodynamic analysis revealed that limited plasticity and extreme favorable entropy underpinned the ability of the HA1.7 T-cell clone to cross-react with HA(306-318) presented by multiple MHC-II alleles.


Subject(s)
Cross Reactions , HLA-DR1 Antigen/chemistry , HLA-DR4 Antigen/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Amino Acid Sequence , Cells, Cultured , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , HLA-DR1 Antigen/immunology , HLA-DR4 Antigen/immunology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lymphocyte Activation , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , T-Lymphocytes/physiology , Thermodynamics
8.
J Biol Chem ; 284(35): 23580-91, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19567875

ABSTRACT

Understanding the structural and assembly dynamics of the amyloid beta-protein (Abeta) has direct relevance to the development of therapeutic agents for Alzheimer disease. To elucidate these dynamics, we combined scanning amino acid substitution with a method for quantitative determination of the Abeta oligomer frequency distribution, photo-induced cross-linking of unmodified proteins (PICUP), to perform "scanning PICUP." Tyr, a reactive group in PICUP, was substituted at position 1, 10, 20, 30, or 40 (for Abeta40) or 42 (for Abeta42). The effects of these substitutions were probed using circular dichroism spectroscopy, thioflavin T binding, electron microscopy, PICUP, and mass spectrometry. All peptides displayed a random coil --> alpha/beta --> beta transition, but substitution-dependent alterations in assembly kinetics and conformer complexity were observed. Tyr(1)-substituted homologues of Abeta40 and Abeta42 assembled the slowest and yielded unusual patterns of oligomer bands in gel electrophoresis experiments, suggesting oligomer compaction had occurred. Consistent with this suggestion was the observation of relatively narrow [Tyr(1)]Abeta40 fibrils. Substitution of Abeta40 at the C terminus decreased the population conformational complexity and substantially extended the highest order of oligomers observed. This latter effect was observed in both Abeta40 and Abeta42 as the Tyr substitution position number increased. The ability of a single substitution (Tyr(1)) to alter Abeta assembly kinetics and the oligomer frequency distribution suggests that the N terminus is not a benign peptide segment, but rather that Abeta conformational dynamics and assembly are affected significantly by the competition between the N and C termini to form a stable complex with the central hydrophobic cluster.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Protein Multimerization , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Humans , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Sequence Alignment
9.
Immunology ; 123(3): 305-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18251991

ABSTRACT

The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/analysis , Antibody Affinity , Flow Cytometry/methods , Histocompatibility Antigens Class II/immunology , Humans , Staining and Labeling/methods
10.
Methods Mol Biol ; 299: 11-8, 2005.
Article in English | MEDLINE | ID: mdl-15980592

ABSTRACT

The assembly of the amyloid beta-protein (Abeta) into neurotoxic oligomers and fibrils is a seminal pathogenic process in Alzheimer's disease (AD). Understanding the mechanisms of Abeta assembly could prove useful in the identification of therapeutic targets. Owing to the metastable nature of Abeta oligomers, it is difficult to obtain interpretable data through application of classical methods, such as electrophoresis, chromatography, fluorescence, and light scattering. Here, we apply the method Photo-Induced Crosslinking of Unmodified Proteins (PICUP) to the study of Abeta oligomerization. This method directly produces covalent bonds among unmodified polypeptide chains through in situ generation of peptide free radicals. PICUP provides a snapshot of the native oligomerization state of proteins and can be used for assembly state analysis of a wide variety of peptides and proteins.


Subject(s)
Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/chemistry , Photochemistry/methods , Organometallic Compounds , Photochemistry/instrumentation , Photolysis
11.
J Am Chem Soc ; 125(50): 15359-65, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14664580

ABSTRACT

Aberrant protein oligomerization is an important pathogenetic process in vivo. In Alzheimer's disease (AD), the amyloid beta-protein (Abeta) forms neurotoxic oligomers. The predominant in vivo Abeta alloforms, Abeta40 and Abeta42, have distinct oligomerization pathways. Abeta42 monomers oligomerize into pentamer/hexamer units (paranuclei) which self-associate to form larger oligomers. Abeta40 does not form these paranuclei, a fact which may explain the particularly strong linkage of Abeta42 with AD. Here, we sought to determine the structural elements controlling paranucleus formation as a first step toward the development of strategies for treating AD. Because oxidation of Met(35) is associated with altered Abeta assembly, we examined the role of Met(35) in controlling Abeta oligomerization. Oxidation of Met(35) in Abeta42 blocked paranucleus formation and produced oligomers indistinguishable in size and morphology from those produced by Abeta40. Systematic structural alterations of the C(gamma)(35)-substituent group revealed that its electronic nature, rather than its size (van der Waals volume), was the factor controlling oligomerization pathway choice. Preventing assembly of toxic Abeta42 paranuclei through selective oxidation of Met(35) thus represents a potential therapeutic approach for AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/biosynthesis , Methionine/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Methionine/chemistry , Oxidation-Reduction
12.
J Biol Chem ; 278(37): 34882-9, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12840029

ABSTRACT

Assembly of monomeric amyloid beta-protein (A beta) into oligomeric structures is an important pathogenetic feature of Alzheimer's disease. The oligomer size distributions of aggregate-free, low molecular weight A beta 40 and A beta 42 can be assessed quantitatively using the technique of photo-induced cross-linking of unmodified proteins. This approach revealed that low molecular weight A beta 40 is a mixture of monomer, dimer, trimer, and tetramer, in rapid equilibrium, whereas low molecular weight A beta 42 preferentially exists as pentamer/hexamer units (paranuclei), which self-associate to form larger oligomers. Here, photo-induced cross-linking of unmodified proteins was used to evaluate systematically the oligomerization of 34 physiologically relevant A beta alloforms, including those containing familial Alzheimer's disease-linked amino acid substitutions, naturally occurring N-terminal truncations, and modifications altering the charge, the hydrophobicity, or the conformation of the peptide. The most important structural feature controlling early oligomerization was the length of the C terminus. Specifically, the side-chain of residue 41 in A beta 42 was important both for effective formation of paranuclei and for self-association of paranuclei into larger oligomers. The side-chain of residue 42, and the C-terminal carboxyl group, affected paranucleus self-association. A beta 40 oligomerization was particularly sensitive to substitutions of Glu22 or Asp23 and to truncation of the N terminus, but not to substitutions of Phe19 or Ala21. A beta 42 oligomerization, in contrast, was largely unaffected by substitutions at positions 22 or 23 or by N-terminal truncations, but was affected significantly by substitutions of Phe19 or Ala21. These results reveal how specific regions and residues control A beta oligomerization and show that these controlling elements differ between A beta 40 and A beta 42.


Subject(s)
Amyloid beta-Peptides/chemistry , Alzheimer Disease/pathology , Amino Acid Sequence , Dimerization , Humans , Molecular Weight
13.
Proc Natl Acad Sci U S A ; 100(1): 330-5, 2003 Jan 07.
Article in English | MEDLINE | ID: mdl-12506200

ABSTRACT

Amyloid beta-protein (Abeta) is linked to neuronal injury and death in Alzheimer's disease (AD). Of particular relevance for elucidating the role of Abeta in AD is new evidence that oligomeric forms of Abeta are potent neurotoxins that play a major role in neurodegeneration and the strong association of the 42-residue form of Abeta, Abeta42, with the disease. Detailed knowledge of the structure and assembly dynamics of Abeta thus is important for the development of properly targeted AD therapeutics. Recently, we have shown that Abeta oligomers can be cross-linked efficiently, and their relative abundances quantified, by using the technique of photo-induced cross-linking of unmodified proteins (PICUP). Here, PICUP, size-exclusion chromatography, dynamic light scattering, circular dichroism spectroscopy, and electron microscopy have been combined to elucidate fundamental features of the early assembly of Abeta40 and Abeta42. Carefully prepared aggregate-free Abeta40 existed as monomers, dimers, trimers, and tetramers, in rapid equilibrium. In contrast, Abeta42 preferentially formed pentamerhexamer units (paranuclei) that assembled further to form beaded superstructures similar to early protofibrils. Addition of Ile-41 to Abeta40 was sufficient to induce formation of paranuclei, but the presence of Ala-42 was required for their further association. These data demonstrate that Abeta42 assembly involves formation of several distinct transient structures that gradually rearrange into protofibrils. The strong etiologic association of Abeta42 with AD may thus be a result of assemblies formed at the earliest stages of peptide oligomerization.


Subject(s)
Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/isolation & purification , Humans , Models, Neurological , Molecular Weight , Peptide Fragments/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...