Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 21(20): 205104, 2009 May 20.
Article in English | MEDLINE | ID: mdl-21825523

ABSTRACT

The structural properties of wet silica sonogels prepared with different volume fractions of the liquid phase were studied by small-angle x-ray scattering (SAXS) and thermogravimetry (TG). The SAXS intensity curves of aged wet gels were all found to be well fitted by the form factor for scattering from non-randomly branched polymers in solution. The radius of gyration (R(g)) of the polycondensates and the branching density were found to increase with the volume fraction of the liquid phase of the wet gels. The molecular weight (M) of the branched polycondensates was found to scale as M∼R(g)(α) with α quite close to 2 in the studied range.

2.
J Phys Chem B ; 110(43): 21582-7, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064111

ABSTRACT

Wet silica gels with approximately 1.4 x 10(-3) mol SiO2/cm3 and approximately 92 vol % liquid phase were obtained from sonohydrolysis of tetraethoxysilane (TEOS) with different additions of isopropyl alcohol (IPA). The IPA/TEOS molar ratio R was changed from 0 to 4. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The wet gels exhibit mass fractal structure with fractal dimension increasing from D approximately 2.10 to D approximately 2.22, characteristic length xi decreasing from approximately 9.5 to approximately 6.9 nm, as R increases from 0 to 4, and an estimated characteristic length for the primary silica particles lower than approximately 0.3 nm. The supercritical process apparently eliminates a fraction of the porosity, increasing the mass fractal dimension and shortening the fractality domain in the mesopore region. The fundamental role of isopropyl alcohol on the structure of the resulting aerogels is to decrease the porosity and the pore mean size as R changes from pure TEOS to R = 4. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure, with correlated mass fractal dimension Dm approximately 2.7 and surface fractal dimension Ds approximately 2.3, as inferred from SAXS and nitrogen adsorption data.

3.
Ultrason Sonochem ; 5(2): 79-81, 1998 Jun.
Article in English | MEDLINE | ID: mdl-11270341

ABSTRACT

Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (approximately 34 A) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300 degrees C.

4.
Ultrason Sonochem ; 4(4): 321-3, 1997 Oct.
Article in English | MEDLINE | ID: mdl-11233816

ABSTRACT

Structural changes induced by ultrasound during the aging of the aluminum monohydroxide (boehmite) were studied by means of X-ray diffraction (XRD) and nitrogen adsorption. The BET surface area and the pore volume of the ultrasound stimulated hydroxide (HU) are about 40% less than those of the non-stimulated one (HS). The mean pore size practically does not change, while the mean crystallite size (L) is about 25% greater in the HU system. The increase of L alone is not enough to account for the surface area diminution, suggesting that the sonication also induces compaction by elimination of some porosity. The sonication of the precursor hydroxide does not seem to play an apparent role in the structural properties of the resulting calcinated gamma-alumina.

SELECTION OF CITATIONS
SEARCH DETAIL