Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 15(1): 167, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35562808

ABSTRACT

OBJECTIVE: Patterns of cryopreservation of explanted skull bone flaps have long been a matter of debate, in particular the appropriate temperature of storage. To the best of our knowledge no study to date has compared the microbiological profile and the infection potential of skull bone flaps cryostored at the same institution at disparate degrees for neurosurgical purposes. In the context of our clinical trial DRKS00023283, we performed a bacterial culture of explanted skull bone flaps, which were cryopreserved lege artis at a temperature of either - 23 °C or - 80 °C after a decompressive hemicraniectomy. In a further step, we contaminated the bone fragments in a s uspension with specific pathogens (S. aureus, S. epidermidis and C. acnes, Colony forming unit CFU 103/ml) over 24 h and conducted a second culture. RESULTS: A total of 17 cryopreserved skull flaps (8: - 23 °C; 9: - 80 °C) explanted during decompressive hemicraniectomies performed between 2019 and 2020 as well as 2 computer-aided-designed skulls (1 vancomycin-soaked) were analyzed. Median duration of cryopreservation was 10.5 months (2-17 months). No microorganisms were detected at the normal bacterial culture. After active contamination of our skull flaps, all samples showed similar bacterial growth of above-mentioned pathogens; thus, our study did not reveal an influence of the storage temperature upon infectious dynamic of the skulls.


Subject(s)
Decompressive Craniectomy , Cryopreservation , Skull/microbiology , Skull/surgery , Staphylococcus aureus , Surgical Flaps/surgery
2.
J Appl Microbiol ; 130(4): 1173-1180, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32970936

ABSTRACT

AIM: Rapid detection of biological agents in biodefense is critical for operational, tactical and strategic levels as well as for medical countermeasures. Yersinia pestis, Francisella tularensis, and Bacillus anthracis are high priority agents of biological warfare or bioterrorism and many response forces use lateral flow assays (LFAs) for their detection. Several companies produce these assays, which offer results in short time and are easy to use. Despite their importance, only few publications on the limits of detection (LOD) for LFAs are available. Most of these studies used inactivated bacteria or risk group-2 strains. As the inactivation process in previous studies might have affected the tests' performances, it was our aim in this study to determine and compare the LOD of several commercially available LFAs using viable risk group-3 strains. METHODS AND RESULTS: Lateral flow assays from four different companies for the detection of following bacteria were evaluated: Y. pestis, F. tularensis and B. anthracis spores. Two independent quantification methods for each target organism were applied, in order to ensure high quantification accuracy. LODs varied greatly between tests and organisms and ranged between 104 for Y. pestis-tests and as high as >109 for one B. anthracis-test. CONCLUSION: This work precisely determined the LODs of LFAs from four commercial suppliers. The herein determined LODs differed from results of previous studies. This illustrates the need for using accurately quantified viable risk group 3-strains for determining such LODs. SIGNIFICANCE AND IMPACT OF THE STUDY: Our work bridges an important knowledge gap with regard to LFA LOD. The LODs determined in this study will facilitate better assessment of LFA-results. They illustrate that a negative LFA result is not suited to exclude the presence of the respective agent in the analyzed sample.


Subject(s)
Bacillus anthracis/isolation & purification , Bacteriological Techniques/methods , Francisella tularensis/isolation & purification , Immunoassay/methods , Yersinia pestis/isolation & purification , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Humans , Limit of Detection , Microbial Viability , Spores, Bacterial/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...