Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 16(11): 26582-98, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26556351

ABSTRACT

Rapid and complex immune responses are induced in plants upon pathogen recognition. One form of plant defense response is a programmed burst in transcription and translation of pathogenesis-related proteins, of which many rely on ER processing. Interestingly, several ER stress marker genes are up-regulated during early stages of immune responses, suggesting that enhanced ER capacity is needed for immunity. Eukaryotic cells respond to ER stress through conserved signaling networks initiated by specific ER stress sensors tethered to the ER membrane. Depending on the nature of ER stress the cell prioritizes either survival or initiates programmed cell death (PCD). At present two plant ER stress sensors, bZIP28 and IRE1, have been described. Both sensor proteins are involved in ER stress-induced signaling, but only IRE1 has been additionally linked to immunity. A second branch of immune responses relies on PCD. In mammals, ER stress sensors are involved in activation of PCD, but it is unclear if plant ER stress sensors play a role in PCD. Nevertheless, some ER resident proteins have been linked to pathogen-induced cell death in plants. In this review, we will discuss the current understanding of plant ER stress signaling and its cross-talk with immune signaling.


Subject(s)
Endoplasmic Reticulum Stress , Plant Immunity , Plant Physiological Phenomena , Signal Transduction , Animals , Apoptosis , Host-Pathogen Interactions
2.
J Vis Exp ; (104)2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26485301

ABSTRACT

In the absence of specialized mobile immune cells, plants utilize their localized programmed cell death and Systemic Acquired Resistance to defend themselves against pathogen attack. The contribution of a specific Arabidopsis gene to the overall plant immune response can be specifically and quantitatively assessed by assaying the pathogen growth within the infected tissue. For over three decades, the hemibiotrophic bacterium Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) has been widely applied as the model pathogen to investigate the molecular mechanisms underlying the Arabidopsis immune response. To deliver pathogens into the leaf tissue, multiple inoculation methods have been established, e.g., syringe infiltration, dip inoculation, spray, vacuum infiltration, and flood inoculation. The following protocol describes an optimized syringe infiltration method to deliver virulent Psm ES4326 into leaves of adult soil-grown Arabidopsis plants and accurately screen for enhanced disease susceptibility (EDS) towards this pathogen. In addition, this protocol can be supplemented with multiple pre-treatments to further dissect specific immune defects within different layers of plant defense, including Salicylic Acid (SA)-Triggered Immunity (STI) and MAMP-Triggered Immunity (MTI).


Subject(s)
Arabidopsis/immunology , Arabidopsis/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Pseudomonas syringae/growth & development , Immunity, Innate/immunology , Plant Leaves/microbiology , Pseudomonas syringae/isolation & purification , Salicylic Acid/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...