Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 17(11): 3524-3531, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27744699

ABSTRACT

Composite scaffolds of bioactive glass and poly(lactide-co-glycolide) provide advantages over homogeneous scaffolds, yet their therapeutic potential can be improved by strategies that promote adhesion and present instructive cues to associated cells. Mesenchymal stem cell (MSC)-secreted extracellular matrix (ECM) enhances survival and function of associated cells. To synergize the benefits of an instructive ECM with composite scaffolds, we tested the capacity of ECM-coated composite scaffolds to promote cell persistence and resultant osteogenesis. Human MSCs cultured on ECM-coated scaffolds exhibited increased metabolic activity and decreased apoptosis compared to uncoated scaffolds. Additionally, MSCs on ECM-coated substrates in short-term culture secreted more proangiogenic factors while maintaining markers of osteogenic differentiation. Upon implantation, we detected improved survival of MSCs on ECM-coated scaffolds over 3 weeks. Histological evaluation revealed enhanced cellularization and osteogenic differentiation in ECM-coated scaffolds compared to controls. These findings demonstrate the promise of blending synthetic and natural ECMs and their potential in tissue regeneration.


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Biocompatible Materials , Cells, Cultured , Extracellular Matrix/drug effects , Humans , Polyglactin 910/administration & dosage , Polyglactin 910/chemistry , Regeneration/drug effects , Tissue Scaffolds/chemistry
2.
Adv Healthc Mater ; 5(19): 2501-2509, 2016 10.
Article in English | MEDLINE | ID: mdl-27581621

ABSTRACT

There is a substantial need to prolong cell persistence and enhance functionality in situ to enhance cell-based tissue repair. Bone morphogenetic protein-2 (BMP-2) is often used at high concentrations for osteogenic differentiation of mesenchymal stem cells (MSCs) but can induce apoptosis. Biomaterials facilitate the delivery of lower doses of BMP-2, reducing side effects and localizing materials at target sites. Photocrosslinked alginate hydrogels (PAHs) can deliver osteogenic materials to irregular-sized bone defects, providing improved control over material degradation compared to ionically cross-linked hydrogels. It is hypothesized that the delivery of MSCs and BMP-2 from a PAH increases cell persistence by reducing apoptosis, while promoting osteogenic differentiation and enhancing bone formation compared to MSCs in PAHs without BMP-2. BMP-2 significantly decreases apoptosis and enhances survival of photoencapsulated MSCs, while simultaneously promoting osteogenic differentiation in vitro. Bioluminescence imaging reveals increased MSC survival when implanted in BMP-2 PAHs. Bone defects treated with MSCs in BMP-2 PAHs demonstrate 100% union as early as 8 weeks and significantly higher bone volumes at 12 weeks, while defects with MSC-entrapped PAHs alone do not fully bridge. This study demonstrates that transplantation of MSCs with BMP-2 in PAHs achieves robust bone healing, providing a promising platform for bone repair.


Subject(s)
Alginates/pharmacology , Bone Morphogenetic Protein 2/metabolism , Cell Survival/drug effects , Hydrogels/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Animals , Apoptosis/drug effects , Biocompatible Materials/pharmacology , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/physiology , Cell Differentiation/drug effects , Cell Survival/physiology , Cells, Cultured , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Humans , Male , Mesenchymal Stem Cells/drug effects , Osteogenesis/physiology , Rats , Rats, Nude , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...