Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Russ Chem Bull ; 72(3): 807-818, 2023.
Article in English | MEDLINE | ID: mdl-37089866

ABSTRACT

Efficient conditions for the synthesis of nitrogen-containing heterocyclic derivatives of (1R,3S)(+)-camphoric acid were selected. A series of heterocyclic compounds based on (+)-camphoric acid bearing pharmacophoric fragments was synthesized using the developed methodology. The compounds were tested for their antiviral activity against SARS-CoV-2 and H1N1 influenza viruses, and efficient inhibitors were identified that are of significant interest for further studies. The stability of the compounds and pharmaco-kinetics of the leader compound were studied when administered intragastrically and intramuscularly to mice at a dose of 200 mg kg-1 using the HPLC-MS/MS method.

2.
Russ Chem Bull ; 71(11): 2460-2466, 2022.
Article in English | MEDLINE | ID: mdl-36569657

ABSTRACT

A new method for preparation of 4-hydroxy-3-nitro-1,4-dihydrotriazolo[5,1-c][1,2,4]-triazines using 1-nitro-2-morpholinoethylene and 3-diazo-1,2,4-triazoles is proposed. Antiviral activity against the Coxsackie B3 virus and electrochemical transformations of the prepared compounds are studied.

3.
Braz J Med Biol Res ; 52(5): e8108, 2019.
Article in English | MEDLINE | ID: mdl-31038578

ABSTRACT

Animal models of diseases are invaluable tools of modern medicine. More than forty years have passed since the first successful experiments and the spectrum of available models, as well as the list of methods for creating them, have expanded dramatically. The major step forward in creating specific disease models was the development of gene editing techniques, which allowed for targeted modification of the animal's genome. In this review, we discuss the available tools for creating transgenic animal models, such as transgenesis methods, recombinases, and nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR/Cas9 systems. We then focus specifically on the models of atherosclerosis, especially mouse models that greatly contributed to improving our understanding of the disease pathogenesis and we outline their characteristics and limitations.


Subject(s)
Animals, Genetically Modified , Atherosclerosis/physiopathology , Disease Models, Animal , Genetic Engineering/methods , Transcription Activator-Like Effector Nucleases/metabolism , Animals , Atherosclerosis/genetics , Biomedical Research/methods , Female , Gene Transfer Techniques , Humans , Male , Mice
4.
Braz. j. med. biol. res ; 52(5): e8108, 2019. tab
Article in English | LILACS | ID: biblio-1001521

ABSTRACT

Animal models of diseases are invaluable tools of modern medicine. More than forty years have passed since the first successful experiments and the spectrum of available models, as well as the list of methods for creating them, have expanded dramatically. The major step forward in creating specific disease models was the development of gene editing techniques, which allowed for targeted modification of the animal's genome. In this review, we discuss the available tools for creating transgenic animal models, such as transgenesis methods, recombinases, and nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR/Cas9 systems. We then focus specifically on the models of atherosclerosis, especially mouse models that greatly contributed to improving our understanding of the disease pathogenesis and we outline their characteristics and limitations.


Subject(s)
Humans , Animals , Male , Female , Rabbits , Animals, Genetically Modified , Genetic Engineering/methods , Disease Models, Animal , Atherosclerosis/physiopathology , Transcription Activator-Like Effector Nucleases/metabolism , Gene Transfer Techniques , Biomedical Research/methods , Atherosclerosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...