Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(44): 27211-27217, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077588

ABSTRACT

Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake's highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain.


Subject(s)
Fresh Water/chemistry , Lakes/chemistry , Nutrients/analysis , Climate Change , Diatoms , Ecosystem , Environmental Science/methods , Geologic Sediments , Ice Cover , Lakes/analysis , Russia , Siberia
2.
PLoS One ; 14(2): e0213413, 2019.
Article in English | MEDLINE | ID: mdl-30818378

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0208765.].

3.
PLoS One ; 13(12): e0208765, 2018.
Article in English | MEDLINE | ID: mdl-30566423

ABSTRACT

Lake Baikal has been experiencing limnological changes from recent atmospheric warming since the 1950s, with rising lake water temperatures, reduced ice cover duration and reduced lake surface-water mixing due to stronger thermal stratification. This study uses lake sediment cores to reconstruct recent changes (c. past 20 years) in Lake Baikal's pelagic diatom communities relative to previous 20th century diatom assemblage records collected in 1993 and 1994 at the same locations in the lake. Recent changes documented within the core-top diatom records agree with predictions of diatom responses to warming at Lake Baikal. Sediments in the south basin of the lake exhibit clear temporal changes, with the most rapid occurring in the 1990's with shifts towards higher abundances of the cosmopolitan Synedra acus and a decline in endemic species, mainly Cyclotella minuta and Stephanodiscus meyerii and to a lesser extent Aulacoseira baicalensis and Aulacoseira skvortzowii. The north basin, in contrast, shows no evidence of recent diatom response to lake warming despite marked declines in north basin ice cover in recent decades. This study also shows no diatom-inferred evidence of eutrophication from deep water sediments. However, due to the localised impacts seen in areas of Lake Baikal's shoreline from nutrient pollution derived from inadequate sewage treatment, urgent action is vital to prevent anthropogenic pollution extending into the open waters.


Subject(s)
Climate Change , Diatoms , Ecosystem , Lakes , Geologic Sediments , Models, Theoretical , Siberia , Spatial Analysis , Temperature
4.
Environ Sci Process Impacts ; 16(4): 879-89, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24619231

ABSTRACT

Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH4 (AOM) either via the reduction of sulphate (SO4(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH4(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented.


Subject(s)
Ferric Compounds/chemistry , Geologic Sediments/chemistry , Lakes/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Anaerobiosis , Environmental Monitoring , Ferric Compounds/analysis , Manganese Compounds/analysis , Methane/chemistry , Oxidation-Reduction , Oxides/analysis , Siberia , Sulfates/chemistry , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...