Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962200

ABSTRACT

The data presented in this article are an update of the dataset provided by Musazzi et al. [1] and are related to the research article entitled "Equivalence assessment of creams with quali-quantitative differences in light of the EMA and FDA regulatory framework" [2]. In vitro permeation study (IVPT) is typically conducted using the method of Franz's diffusion cell for assessing the biopharmaceutical performance of topically applied products. While the human epidermis is considered the benchmark, various animal models (for instance, pig ear) have been accepted as a permeation membrane. Nonetheless, it is crucial to evaluate the integrity of the membrane to ensure the quality of the experiments. The methods employed for this assessment vary, and the outcomes are heavily reliant on the operational conditions, and the model membrane. The article contributes to the existing dataset by providing data on the electrical resistance values of pig ear skin samples and their correlation with the in vitro permeability fluxes of caffeine and benzoic acid. This data is utilized to determine a suitable cut-off for verifying the skin integrity of such an animal model. This information could be beneficial for facilitating critical or comprehensive analyses, contributing to the creation of a standard method.

2.
Eur J Pharm Sci ; 195: 106726, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38354986

ABSTRACT

EMA and FDA are upgrading guidelines on assessing the quality and the equivalence of topically applied drug products for developing copies of originator products and supporting post-marketing variations. For topical products having remarkably similar composition, both EMA and FDA accept the equivalence on the bases of the comparison of rheological properties and in vitro drug release constant (k) and skin permeation flux (J) values, instead of clinical studies. This work aims to evaluate the feasibility to expand this approach to variations of the composition of complex semi-solid preparations. Ibuprofen (IB) creams at two different strengths (i.e., 1 % and 10 %) were used as a model formulation. Two formulative changes were performed: (a) the addition of the humectant to simulate a minor post-marketing variation; (b) the substitution of the emulsifying system to simulate a major one. These variations impacted only in 1 % IB formulations where both the equivalences of rheological data and J-values failed. At the highest concentration, the presence of IB crystals broke down the differences in rheological patterns and lead the IB thermodynamic activity at the maximum figuring out an overlapping of the J-values. Such data suggest the combination of these studies, which are thought mainly for the development of copies, could be also applied to the management of post-marketing variations that involve product composition.


Subject(s)
Skin Absorption , Skin , Skin/metabolism , Ibuprofen/metabolism , Thermodynamics , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...