Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202319831, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38465464

ABSTRACT

We have developed a general and practical approach towards 2-oxabicyclo[2.1.1]hexanes with two and three exit vectors via an iodocyclization reaction. The obtained compounds have been easily converted into the corresponding building blocks for use in medicinal chemistry. 2-Oxabicyclo[2.1.1]hexanes have been incorporated into the structure of five drugs and three agrochemicals, and validated biologically as bioisosteres of ortho- and meta-benzenes.

2.
Microorganisms ; 12(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257994

ABSTRACT

The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.

3.
Nat Chem ; 15(8): 1155-1163, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37277469

ABSTRACT

The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.

4.
Angew Chem Int Ed Engl ; 59(46): 20515-20521, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32662201

ABSTRACT

Saturated bioisosteres of ortho-disubstituted benzenes (bicyclo[2.1.1]hexanes) were synthesized, characterized and validated. These cores were incorporated into the bioactive compounds Valsartan, Boskalid and Fluxapyroxad instead of the benzene ring. The saturated analogues showed a similar level of antifungal activity compared to that of Boskalid and Fluxapyroxad.

5.
J Chem Ecol ; 33(2): 225-37, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200890

ABSTRACT

Benzoxazolinone detoxification is similar in plants grown under sulfur deficiency conditions and in control plants grown with an optimal S supply. However, when S-deficient plants were treated with metolachlor before benzoxazolin-2(3H)-one (BOA) incubation, detoxification was reduced, as indicated by a lower accumulation of the detoxification products BOA-6-O-glucoside and glucoside carbamate and by a loss of BOA-6-OH glucosyltransfease activity. Root colonizing microorganisms and the endophytic fungus Fusarium verticillioides participated in benzoxazolinone detoxification by converting the compound to 2-acetamidophenol (AAP) or O-hydroxyphenyl malonamic acid (OHPMA), a process accompanied by the appearance of phenoxazinone. Maize roots, however, absorbed AAP and OHPMA only in traces. Absorbed traces of OHPMA stimulated maize radicle growth, and traces of AAP stimulated cress. Phenoxazinone inhibited the growth of cress radicles at concentrations higher than 500 microM, whereas maize radicles were hardly affected. F. verticillioides did not convert benzoxazolinone to any known microbial degradation product when the medium of maize seedlings was inoculated with the fungus under sterile condition. Plant-fungus interactions seem to be important in plant survival of allelopathic attacks. This study points to a complicated network of allelopathic interactions that are influenced by biotic and abiotic factors, including herbicides.


Subject(s)
Benzoxazoles/metabolism , Fusarium/metabolism , Sulfur/metabolism , Zea mays/metabolism , Zea mays/microbiology , Acetamides/pharmacology , Acetaminophen/metabolism , Inactivation, Metabolic , Oxazines/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Seedlings/metabolism , Zea mays/drug effects , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...