Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(46): 32132-32141, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37986588

ABSTRACT

In the present study, the V2O5 films synthesized by plasma-enhanced atomic layer deposition on p-Si and fluorinated graphene on Si (or FG/Si) substrates were analyzed for memristive applications. A number of samples were grown with V2O5 films with an average thickness of 1.0-10.0 nm, as determined by ellipsometric measurements. The study of surface morphology by atomic force microscopy showed that an island growth occurs in the initial stages of the film growth. The Raman spectra of the synthesized V2O5 films with an average thickness of more than 2.0 nm on the SiO2/Si substrates exhibit six distinct modes typical of the orthorhombic V2O5 phase. A large hysteresis was found in the C-V characteristics of the V2O5 films with a thickness of 1.0-4.2 nm. In general, the built-in charge in the V2O5 layers with an average thickness of 1.0-4.0 nm is positive and has a value of about ∼(2-8) × 1011 cm-2 at the 1 MHz frequency. Increasing the V2O5 film thickness leads to the accumulation of negative built-in charge up to -(1.7 to 2.3) × 1011 cm-2 at the 1 MHz frequency. The temperature dependence of the conductivity exhibits different electrically active states in V2O5/Si and V2O5/FG/Si structures. Thus, the FG layer can modify these states. V2O5 layers with an average film thickness of 1.0-3.6 nm demonstrate the memristive switching with an ON/OFF ratio of ∼1-4 orders of magnitude. At film thicknesses above 5.0 nm, the memristive switching practically vanishes. V2O5 films with an average thickness of 3.6 nm were found to be particularly stable and promising for memristive switching applications.

2.
Phys Chem Chem Phys ; 23(2): 1072-1081, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33346263

ABSTRACT

Perovskite related oxides ABO3-δ exhibiting mixed ionic-electronic conductivity (MIEC) possess large deviations from the oxygen stoichiometry. When providing excellent application potential, this feature also makes it very difficult to study the reaction mechanism between such oxides and molecular oxygen, also known as the oxygen reduction reaction. The complexity of the theoretical interpretation of kinetic experiments originates from the significant dependence of the kinetic and equilibrium properties of MIEC oxides on δ. It is proposed to consider such grossly nonstoichiometric oxides having different oxygen nonstoichiometry as chemical homologues participating in the oxygen exchange reaction and forming a series continuous in δ. The continuous homologous series approach is considered using the example of SrCo0.9Ta0.1O3-δ, an SOFC cathode material. The equilibrium and kinetic properties of the oxide were studied by new methods of oxygen partial pressure relaxation and oxygen release. Linear free-energy relationships have been discovered in the homologous series: thermodynamic and kinetic enthalpy-entropy compensations, as well as the Brønsted-Evans-Polanyi relation. A relationship has been established between the change in the observed LFERs and the morphotropic phase transition in the oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...