Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(19): 10642-7, 2001 Sep 11.
Article in English | MEDLINE | ID: mdl-11535814

ABSTRACT

As shown earlier, raft-like domains resembling those thought to be present in natural cell membranes can be formed in supported planar lipid monolayers. These liquid-ordered domains coexist with a liquid-disordered phase and form in monolayers prepared both from synthetic lipid mixtures and lipid extracts of the brush border membrane of mouse kidney cells. The domains are detergent-resistant and are highly enriched in the glycosphingolipid GM1. In this work, the properties of these raft-like domains are further explored and compared with properties thought to be central to raft function in plasma membranes. First, it is shown that domain formation and disruption critically depends on the cholesterol density and can be controlled reversibly by treating the monolayers with the cholesterol-sequestering reagent methyl-beta-cyclodextrin. Second, the glycosylphosphatidylinositol-anchored cell-surface protein Thy-1 significantly partitions into the raft-like domains. The extent of this partitioning is reduced when the monolayers contain GM1, indicating that different molecules can compete for domain occupation. Third, the partitioning of a saturated phospholipid analog into the raft phase is dramatically increased (15% to 65%) after cross-linking with antibodies, whereas the distribution of a doubly unsaturated phospholipid analog is not significantly affected by cross-linking (approximately 10%). This result demonstrates that cross-linking, a process known to be important for certain cell-signaling processes, can selectively translocate molecules to liquid-ordered domains.


Subject(s)
G(M1) Ganglioside/chemistry , Glycerophospholipids/chemistry , Membrane Microdomains/chemistry , Membranes, Artificial , Models, Molecular , Phosphatidylethanolamines/chemistry , Thy-1 Antigens/chemistry , Antibodies , Cholesterol/chemistry , Cross-Linking Reagents , Fluorescein/chemistry , Fluorescent Dyes/chemistry , Glycosylphosphatidylinositols/chemistry , Organic Chemicals
2.
Biophys J ; 80(3): 1417-28, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11222302

ABSTRACT

One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.


Subject(s)
2-Naphthylamine/analogs & derivatives , Cholesterol/chemistry , G(M1) Ganglioside/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Microvilli/chemistry , Models, Biological , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , 2-Naphthylamine/chemistry , Animals , Fluorescent Dyes , Kidney Cortex , Laurates/chemistry , Microscopy, Fluorescence , Models, Molecular , Molecular Conformation , Phosphatidylethanolamines/chemistry , Rats , Rats, Sprague-Dawley
3.
Biochemistry ; 39(8): 2042-51, 2000 Feb 29.
Article in English | MEDLINE | ID: mdl-10684654

ABSTRACT

In previous work, a general analytical theory for ligand rebinding at cell surfaces was developed for a reversible bimolecular reaction between ligands in solution and receptors on a membrane surface [Lagerholm, B. C., and Thompson, N. L. (1998) Biophys. J. 74, 1215-1228]. This theory can be used to predict theoretical forms for data obtained by using total internal reflection with fluorescence photobleaching recovery (TIR-FPR) [Thompson, N. L., Burghardt, T. P., and Axelrod, D. (1981) Biophys. J. 33, 435-454]. Thus, one method by which the rebinding theory can be tested is to use TIR-FPR. In the work described herein, the reversible kinetics of mouse monoclonal anti-dinitrophenyl (DNP) IgE Fabs at substrate-supported planar membranes composed of 25 mol % DNP-conjugated phosphatidylethanolamine and 75 mol % dipalmitoylphosphatidylcholine have been examined by using TIR-FPR. Data were obtained as a function of the Fab solution concentration. Higher Fab concentrations reduce rebinding (and increase the fluorescence recovery rate) because different Fab molecules compete for the same surface-binding sites. Data were also obtained for solutions containing different volume fractions of glycerol. In these measurements, higher glycerol concentrations increase rebinding (and decrease the fluorescence recovery rate) because the solution viscosity is increased and the Fab diffusion coefficient in solution is decreased. The TIR-FPR data were quantitatively compared with theoretical predictions which follow from the general theory for rebinding at the membrane surface. The data were consistent with the theoretical predictions and, therefore, provide experimental verification of the previously developed theory.


Subject(s)
Immunoglobulin E/metabolism , Immunoglobulin Fab Fragments/metabolism , Animals , Antibodies, Monoclonal/metabolism , Binding Sites, Antibody , Dinitrobenzenes/chemistry , Kinetics , Ligands , Membranes, Artificial , Mice , Models, Biological , Phospholipids/metabolism , Photochemistry , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...