Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 38(11): 4066-71, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11060069

ABSTRACT

The authors report on the development and application of a rapid TaqMan assay for the detection of West Nile (WN) virus in a variety of human clinical specimens and field-collected specimens. Oligonucleotide primers and FAM- and TAMRA-labeled WN virus-specific probes were designed by using the nucleotide sequence of the New York 1999 WN virus isolate. The TaqMan assay was compared to a traditional reverse transcriptase (RT)-PCR assay and to virus isolation in Vero cells with a large number ( approximately 500) of specimens obtained from humans (serum, cerebrospinal fluid, and brain tissue), field-collected mosquitoes, and avian tissue samples. The TaqMan assay was specific for WN virus and demonstrated a greater sensitivity than the traditional RT-PCR method and correctly identified WN virus in 100% of the culture-positive mosquito pools and 98% of the culture-positive avian tissue samples. The assay should be of utility in the diagnostic laboratory to complement existing human diagnostic testing and as a tool to conduct WN virus surveillance in the United States.


Subject(s)
Bird Diseases/diagnosis , Culicidae/virology , Reverse Transcriptase Polymerase Chain Reaction , Taq Polymerase/metabolism , West Nile Fever/diagnosis , West Nile virus/isolation & purification , Animals , Bird Diseases/virology , Birds/virology , Brain/virology , Chlorocebus aethiops , Humans , RNA, Viral/blood , RNA, Viral/cerebrospinal fluid , Sensitivity and Specificity , Vero Cells , Virus Cultivation , West Nile Fever/veterinary , West Nile Fever/virology , West Nile virus/genetics
2.
Science ; 286(5448): 2333-7, 1999 Dec 17.
Article in English | MEDLINE | ID: mdl-10600742

ABSTRACT

In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.


Subject(s)
Disease Outbreaks , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/classification , West Nile virus/genetics , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Base Sequence , Bird Diseases/epidemiology , Bird Diseases/virology , Birds/virology , Encephalitis Viruses, Japanese/classification , Encephalitis Viruses, Japanese/genetics , Fluorescent Antibody Technique, Indirect , Genome, Viral , Humans , Molecular Sequence Data , New England/epidemiology , New York City/epidemiology , Phylogeny , Songbirds/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , West Nile Fever/veterinary , West Nile virus/immunology , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...