Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1541, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233464

ABSTRACT

Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Animals , Autism Spectrum Disorder/genetics , Cullin Proteins/genetics , Cullin Proteins/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neurons/metabolism
2.
Sci Rep ; 13(1): 10411, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369755

ABSTRACT

Inhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep. Indeed, ebony mutants have been described since 1960 as "aggressive mutants," though this behavior has not been quantified. Using automated machine learning-based analyses, we quantitatively confirmed that ebony mutants exhibited increased aggressive behaviors such as boxing but also decreased courtship behaviors and increased sleep. Through tissue-specific knockdown, we found that ebony's role in these behaviors was specific to glia. Unexpectedly, direct measurement of amine neurotransmitters in ebony brains revealed that their levels were not increased but reduced. Thus, increased aggression is the anomalous behavior for this neurotransmitter profile. We further found that ebony mutants exhibited increased aggression only when fighting each other, not when fighting wild-type controls. Moreover, fights between ebony mutants were less likely to end with a clear winner than fights between controls or fights between ebony mutants and controls. In ebony vs. control fights, ebony mutants were more likely to win. Together, these results suggest that ebony mutants exhibit prolonged aggressive behavior only in a specific context, with an equally dominant opponent.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Amines , Catechol O-Methyltransferase , DNA-Binding Proteins/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Neuroglia
SELECTION OF CITATIONS
SEARCH DETAIL
...